Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 28, 2010

VEGF and TNF up-regulate, NSAID down-regulate SOX18 protein level in HUVEC

  • Isidor Petrovic EMAIL logo , Gordan Nikcevic , Jelen Zaric , Curzi Ruegg and Milena Stevanovic
From the journal Open Life Sciences

Abstract

Angiogenesis, the process of generating new blood vessels, is essential to embryonic development, organ formation, tissue regeneration and remodeling, reproduction and wound healing. Also, it plays an important role in many pathological conditions, including chronic inflammation and cancer. Angiogenesis is regulated by a complex interplay of growth factors, inflammatory mediators, adhesion molecules, morphogens and guidance molecules. Transcription factor SOX18 is transiently expressed in nascent endothelial cells during embryonic development and postnatal angiogenesis, but little is known about signaling pathways controlling its expression. The aim of this study was to investigate whether pro-angiogenic molecules and pharmacological inhibitors of angiogenesis modulate SOX18 expression in endothelial cells. Therefore, we treated human umbilical vein endothelial cells (HUVEC) with angiogenic factors, extracellular matrix proteins, inflammatory cytokines and nonsteroidal anti-inflammatory drugs (NSAID) and monitored SOX18 expression. We have observed that the angiogenic factor VEGF and the inflammatory cytokine TNF increase, while the NSAID ibuprofen and NS398 decrease the SOX18 protein level. These results for the first time demonstrate that SOX18 expression is modulated by factors and drugs known to positively or negatively regulate angiogenesis. This opens the possibility of pharmacological manipulation of SOX18 gene expression in endothelial cells to stimulate or inhibit angiogenesis.

[1] Folkman J., Shing Y., Angiogenesis, J. Biol. Chem., 1992, 267, 10931–10934 10.1016/S0021-9258(19)49853-0Search in Google Scholar

[2] Folkman J., D’Amore P.A., Blood vessel formation: what is its molecular basis?, Cell, 1996, 87, 1153–1155 http://dx.doi.org/10.1016/S0092-8674(00)81810-310.1016/S0092-8674(00)81810-3Search in Google Scholar

[3] Risau W., Mechanisms of angiogenesis, Nature, 1997, 386, 671–674 http://dx.doi.org/10.1038/386671a010.1038/386671a0Search in Google Scholar

[4] Felmeden D.C., Blann A.D., Lip G.Y., Angiogenesis: basic pathophysiology and implications for disease, Eur. Heart J., 2003, 24, 586–603 http://dx.doi.org/10.1016/S0195-668X(02)00635-810.1016/S0195-668X(02)00635-8Search in Google Scholar

[5] Folkman J., Watson K., Ingber D., Hanahan D., Induction of angiogenesis during the transition from hyperplasia to neoplasia, Nature, 1989, 339, 58–61 http://dx.doi.org/10.1038/339058a010.1038/339058a0Search in Google Scholar

[6] Hanahan D., Folkman J., Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell, 1996, 86, 353–364 http://dx.doi.org/10.1016/S0092-8674(00)80108-710.1016/S0092-8674(00)80108-7Search in Google Scholar

[7] Pevny L.H., Lovell-Badge R., Sox genes find their feet, Curr. Opin. Genet. Dev., 1997, 7, 338–344 http://dx.doi.org/10.1016/S0959-437X(97)80147-510.1016/S0959-437X(97)80147-5Search in Google Scholar

[8] Wegner M., From head to toes: the multiple facets of Sox proteins, Nucl. Acids Res., 1999, 27, 1409–1420 http://dx.doi.org/10.1093/nar/27.6.140910.1093/nar/27.6.1409Search in Google Scholar

[9] Downes M., Koopman P., SOX18 and the transcriptional regulation of blood vessel development, Trends Cardiovasc. Med., 2001, 11, 318–324 http://dx.doi.org/10.1016/S1050-1738(01)00131-110.1016/S1050-1738(01)00131-1Search in Google Scholar

[10] Pennisi D., Gardner J., Chambers D., Hosking B., Peters J., Muscat G., et al., Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice, Nat. Genet., 2000, 24, 434–437 http://dx.doi.org/10.1038/7430110.1038/74301Search in Google Scholar PubMed

[11] Darby I.A., Bisucci T., Raghoenath S., Olsson J., Muscat G.E., Koopman P., Sox18 is transiently expressed during angiogenesis in granulation tissue of skin wounds with an identical expression pattern to Flk-1 mRNA, Lab Invest., 2001, 81, 937–943 10.1038/labinvest.3780304Search in Google Scholar

[12] Young N., Hahn C.N., Poh A., Dong C., Wilhelm D., Olsson J., et al., Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development, J. Natl. Cancer Inst., 2006, 98, 1060–1067 http://dx.doi.org/10.1093/jnci/djj29910.1093/jnci/djj299Search in Google Scholar

[13] Irrthum A., Devriendt K., Chitayat D., Matthijs G., Glade C., Steijlen P.M., et al., Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedematelangiectasia, Am. J. Hum. Genet., 2003, 72, 1470–1478 http://dx.doi.org/10.1086/37561410.1086/375614Search in Google Scholar

[14] Otrock Z.K., Mahfouz R.A., Makarem J.A., Shamseddine A.I., Understanding the biology of angiogenesis: review of the most important molecular mechanisms, Blood Cells Mol. Dis., 2007, 39, 212–220 http://dx.doi.org/10.1016/j.bcmd.2007.04.00110.1016/j.bcmd.2007.04.001Search in Google Scholar

[15] Ferrara N., VEGF as a therapeutic target in cancer, Oncology, 2005, 69Suppl. 3, 11–16 http://dx.doi.org/10.1159/00008847910.1159/000088479Search in Google Scholar

[16] Schneider B.P., Sledge G.W., Jr., Drug insight: VEGF as a therapeutic target for breast cancer, Nat. Clin. Pract. Oncol., 2007, 4, 181–189 http://dx.doi.org/10.1038/ncponc074010.1038/ncponc0740Search in Google Scholar

[17] Sato Y., Molecular mechanism of angiogenesis transcription factors and their therapeutic relevance, Pharmacol. Ther., 2000, 87, 51–60 http://dx.doi.org/10.1016/S0163-7258(00)00067-X10.1016/S0163-7258(00)00067-XSearch in Google Scholar

[18] Xie K., Wei D., Huang S., Transcriptional anti-angiogenesis therapy of human pancreatic cancer, Cytokine Growth Factor Rev., 2006, 17, 147–156 http://dx.doi.org/10.1016/j.cytogfr.2006.01.00210.1016/j.cytogfr.2006.01.002Search in Google Scholar PubMed

[19] Petrovic I., Stevanovic M., The human SOX18 gene: expression analysis and characterization of its 5′ flanking region, Arch. Biol. Sci., 2007, 59, 267–272 http://dx.doi.org/10.2298/ABS0704267P10.2298/ABS0704267PSearch in Google Scholar

[20] Petrovic I., Kovacevic-Grujicic N., Stevanovic M., ZBP-89 and Sp3 down-regulate while NF-Y up-regulates SOX18 promoter activity in HeLa cells, Mol. Biol. Rep., 2009, 36, 993–1000 http://dx.doi.org/10.1007/s11033-008-9272-x10.1007/s11033-008-9272-xSearch in Google Scholar PubMed

[21] Petrovic I., Grujicic N.K., Stevanovic M., Early Growth Response Protein 1 Acts as an Activator of Sox18 Promoter, Exp. Mol. Med., 2010, 42, 132–142 http://dx.doi.org/10.3858/emm.2010.42.2.01510.3858/emm.2010.42.2.015Search in Google Scholar

[22] Ruegg C., Yilmaz A., Bieler G., Bamat J., Chaubert P., Lejeune F.J., Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma, Nat. Med., 1998, 4, 408–414 http://dx.doi.org/10.1038/nm0498-40810.1038/nm0498-408Search in Google Scholar

[23] Presta M., Dell’Era P., Mitola S., Moroni E., Ronca R., Rusnati M., Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis, Cytokine Growth Factor Rev., 2005, 16, 159–178 http://dx.doi.org/10.1016/j.cytogfr.2005.01.00410.1016/j.cytogfr.2005.01.004Search in Google Scholar

[24] Massague J., Blain S.W., Lo R.S., TGFbeta signaling in growth control, cancer, and heritable disorders, Cell, 2000, 103, 295–309 http://dx.doi.org/10.1016/S0092-8674(00)00121-510.1016/S0092-8674(00)00121-5Search in Google Scholar

[25] Ferrara N., Vascular endothelial growth factor: basic science and clinical progress, Endocr. Rev., 2004, 25, 581–611 http://dx.doi.org/10.1210/er.2003-002710.1210/er.2003-0027Search in Google Scholar PubMed

[26] Ferrara N., Hillan K.J., Gerber H.P., Novotny W., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer, Nat. Rev. Drug Discov., 2004, 3, 391–400 http://dx.doi.org/10.1038/nrd138110.1038/nrd1381Search in Google Scholar PubMed

[27] Abe M., Sato Y., cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vein endothelial cells, Angiogenesis, 2001, 4, 289–298 http://dx.doi.org/10.1023/A:101601861715210.1023/A:1016018617152Search in Google Scholar

[28] Garcia-Ramirez M., Martinez-Gonzalez J., Juan-Babot J.O., Rodriguez C., Badimon L., Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth, Arterioscler. Thromb. Vasc. Biol., 2005, 25, 2398–2403 http://dx.doi.org/10.1161/01.ATV.0000187464.81959.2310.1161/01.ATV.0000187464.81959.23Search in Google Scholar PubMed

[29] Dumont D.J., Fong G.H., Puri M.C., Gradwohl G., Alitalo K., Breitman M.L., Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development, Dev. Dyn., 1995, 203, 80–92 10.1002/aja.1002030109Search in Google Scholar PubMed

[30] Sassa Y., Hata Y., Murata T., Yamanaka I., Honda M., Hisatomi T., et al., Functional role of Egr-1 mediating VEGF-induced tissue factor expression in the retinal capillary endothelium, Graefes Arch. Clin. Exp. Ophthalmol., 2002, 240, 1003–1010 http://dx.doi.org/10.1007/s00417-002-0576-610.1007/s00417-002-0576-6Search in Google Scholar PubMed

[31] Lamalice L., Le Boeuf F., Huot J., Endothelial cell migration during angiogenesis, Circ. Res., 2007, 100, 782–794 http://dx.doi.org/10.1161/01.RES.0000259593.07661.1e10.1161/01.RES.0000259593.07661.1eSearch in Google Scholar

[32] Clark E.A., Brugge J.S., Integrins and signal transduction pathways: the road taken, Science, 1995, 268, 233–239 http://dx.doi.org/10.1126/science.771651410.1126/science.7716514Search in Google Scholar

[33] Leavesley D.I., Schwartz M.A., Rosenfeld M., Cheresh D.A., Integrin beta 1- and beta 3-mediated endothelial cell migration is triggered through distinct signaling mechanisms, J. Cell Biol., 1993, 121, 163–170 http://dx.doi.org/10.1083/jcb.121.1.16310.1083/jcb.121.1.163Search in Google Scholar

[34] Clark R.A., Tonnesen M.G., Gailit J., Cheresh D.A., Transient functional expression of alphaVbeta 3 on vascular cells during wound repair, Am. J. Pathol., 1996, 148, 1407–1421 Search in Google Scholar

[35] Williams G.M., Antitumor necrosis factor-alpha therapy and potential cancer inhibition, Eur. J. Cancer Prev., 2008, 17, 169–177 http://dx.doi.org/10.1097/CEJ.0b013e3282b6fcff10.1097/CEJ.0b013e3282b6fcffSearch in Google Scholar

[36] Zhao X., Bausano B., Pike B.R., Newcomb-Fernandez J.K., Wang K.K., Shohami E., et al., TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures, J. Neurosci. Res., 2001, 64, 121–131 http://dx.doi.org/10.1002/jnr.105910.1002/jnr.1059Search in Google Scholar

[37] Frater-Schroder M., Risau W., Hallmann R., Gautschi P., Bohlen P., Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo, Proc. Natl. Acad. Sci. USA, 1987, 84, 5277–5281 http://dx.doi.org/10.1073/pnas.84.15.527710.1073/pnas.84.15.5277Search in Google Scholar

[38] Leibovich S.J., Polverini P.J., Shepard H.M., Wiseman D.M., Shively V., Nuseir N., Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha, Nature, 1987, 329, 630–632 http://dx.doi.org/10.1038/329630a010.1038/329630a0Search in Google Scholar

[39] Hayden M.S., Ghosh S., Signaling to NF-kappaB, Genes Dev., 2004, 18, 2195–2224 http://dx.doi.org/10.1101/gad.122870410.1101/gad.1228704Search in Google Scholar

[40] Denson L.A., Menon R.K., Shaufl A., Bajwa H.S., Williams C.R., Karpen S.J., TNF-alpha downregulates murine hepatic growth hormone receptor expression by inhibiting Sp1 and Sp3 binding, J. Clin. Invest., 2001, 107, 1451–1458 http://dx.doi.org/10.1172/JCI1099410.1172/JCI10994Search in Google Scholar

[41] Goetze S., Kintscher U., Kaneshiro K., Meehan W.P., Collins A., Fleck E., et al., TNFalpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2, Atherosclerosis, 2001, 159, 93–101 http://dx.doi.org/10.1016/S0021-9150(01)00497-X10.1016/S0021-9150(01)00497-XSearch in Google Scholar

[42] Dubois R.N., Abramson S.B., Crofford L., Gupta R.A., Simon L.S., Van De Putte L.B., et al., Cyclooxygenase in biology and disease, Faseb J, 1998, 12, 1063–1073 10.1096/fasebj.12.12.1063Search in Google Scholar

[43] Form D.M., Auerbach R., PGE2 and angiogenesis, Proc. Soc. Exp. Biol. Med., 1983, 172, 214–218 10.3181/00379727-172-41548Search in Google Scholar

[44] Cheng T., Cao W., Wen R., Steinberg R.H., LaVail M.M., Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells, Invest. Ophthalmol. Vis. Sci., 1998, 39, 581–591 Search in Google Scholar

[45] Tarnawski A.S., Jones M.K., Inhibition of angiogenesis by NSAIDs: molecular mechanisms and clinical implications, J. Mol. Med., 2003, 81, 627–636 http://dx.doi.org/10.1007/s00109-003-0479-y10.1007/s00109-003-0479-ySearch in Google Scholar

[46] Dormond O., Foletti A., Paroz C., Ruegg C., NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis, Nat. Med., 2001, 7, 1041–1047 http://dx.doi.org/10.1038/nm0901-104110.1038/nm0901-1041Search in Google Scholar

[47] Szabo I.L., Pai R., Soreghan B., Jones M.K., Baatar D., Kawanaka H., et al., NSAIDs inhibit the activation of egr-1 gene in microvascular endothelial cells. A key to inhibition of angiogenesis?, J. Physiol. Paris, 2001, 95, 379–383 http://dx.doi.org/10.1016/S0928-4257(01)00051-110.1016/S0928-4257(01)00051-1Search in Google Scholar

[48] Feldman A.L., Libutti S.K., Progress in antiangiogenic gene therapy of cancer, Cancer, 2000, 89, 1181–1194 http://dx.doi.org/10.1002/1097-0142(20000915)89:6<1181::AID-CNCR1>3.0.CO;2-T10.1002/1097-0142(20000915)89:6<1181::AID-CNCR1>3.0.CO;2-TSearch in Google Scholar

Published Online: 2010-5-28
Published in Print: 2010-8-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-010-0031-3/html
Scroll to top button