Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 20, 2011

Ab initio calculations of the atomic and electronic structure of MgF2 (011) and (111) surfaces

  • Anna Vassilyeva EMAIL logo , Robert Eglitis , Eugene Kotomin and Alma Dauletbekova
From the journal Open Physics

Abstract

The results of ab initio slab calculations of surface relaxations, rumplings and charge distribution for the different terminations of the MgF2 (011) and (111) polar surfaces are presented and discussed. We have employed the computer code CRYSTAL with the Gaussian basis set and the hybrid B3PW exchange-correlation functional. Despite the ionic nature of the chemical bonding at both surfaces, a considerable decrease of the optical band gap is predicted (1.3 eV or 10%) for the (111) surface as compared to the bulk.

[1] M. Scrocco, Phys. Rev. B 33, 7228 (1986) http://dx.doi.org/10.1103/PhysRevB.33.722810.1103/PhysRevB.33.7228Search in Google Scholar PubMed

[2] P. Patnaik, Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2002) 344 Search in Google Scholar

[3] A.F. Vassilyeva, R.I. Eglitis, E.A. Kotomin, A.K. Dauletbekova, Physica B 405, 2125 (2010) http://dx.doi.org/10.1016/j.physb.2010.01.11810.1016/j.physb.2010.01.118Search in Google Scholar

[4] G. Vidal-Valat, J.P. Vidal, C.M.E. Zeyen, A. Kurki-Suonio, Acta Crystallogr. B: Struct. Sci 35, 1584 (1979) http://dx.doi.org/10.1107/S056774087900718410.1107/S0567740879007184Search in Google Scholar

[5] J.P. Perdew, Y. Wang, Phys. Rev. B 33, 8800 (1986) http://dx.doi.org/10.1103/PhysRevB.33.880010.1103/PhysRevB.33.8800Search in Google Scholar

[6] J.P. Perdew, Y. Wang, Phys. Rev. B 40, 3399 (E) (1989) http://dx.doi.org/10.1103/PhysRevB.40.339910.1103/PhysRevB.40.3399Search in Google Scholar PubMed

[7] J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) http://dx.doi.org/10.1103/PhysRevB.45.1324410.1103/PhysRevB.45.13244Search in Google Scholar

[8] H. Shi, R. I. Eglitis, G. Borstel, Phys. Rev. B 72, 045109 (2005) http://dx.doi.org/10.1103/PhysRevB.72.04510910.1103/PhysRevB.72.045109Search in Google Scholar

[9] H. Shi, R.I. Eglitis, G. Borstel, J. Phys.; Condens. Matter 18, 8367 (2006) http://dx.doi.org/10.1088/0953-8984/18/35/02110.1088/0953-8984/18/35/021Search in Google Scholar

[10] H. Shi, R. Jia, R.I. Eglitis, Phys. Rev. B 81, 195101 (2010) http://dx.doi.org/10.1103/PhysRevB.81.19510110.1103/PhysRevB.81.195101Search in Google Scholar

[11] L. Yue, R. Jia, H. Shi, X. He, R.I. Eglitis. J. Phys. Chem. A 114, 8444 (2010) http://dx.doi.org/10.1021/jp104437n10.1021/jp104437nSearch in Google Scholar PubMed

[12] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.518810.1103/PhysRevB.13.5188Search in Google Scholar

[13] M. Catti, R. Dovesi, A. Pavese, V.R. Saunders, J. Phys.; Condens. Matter 3, 4151 (1991) http://dx.doi.org/10.1088/0953-8984/3/23/00410.1088/0953-8984/3/23/004Search in Google Scholar

[14] M.I. McCarthy, N.M. Harrison, Phys. Rev. B 49, 8574 (1994) http://dx.doi.org/10.1103/PhysRevB.49.857410.1103/PhysRevB.49.8574Search in Google Scholar

Published Online: 2011-2-20
Published in Print: 2011-4-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-010-0101-1/html
Scroll to top button