Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 21, 2013

A rough curvature-dimension condition for metric measure spaces

  • Anca-Iuliana Bonciocat EMAIL logo
From the journal Open Mathematics

Abstract

We introduce and study a rough (approximate) curvature-dimension condition for metric measure spaces, applicable especially in the framework of discrete spaces and graphs. This condition extends the one introduced by Karl-Theodor Sturm, in his 2006 article On the geometry of metric measure spaces II, to a larger class of (possibly non-geodesic) metric measure spaces. The rough curvature-dimension condition is stable under an appropriate notion of convergence, and stable under discretizations as well. For spaces that satisfy a rough curvature-dimension condition we prove a generalized Brunn-Minkowski inequality and a Bonnet-Myers type theorem.

[1] Aleksandrov A.D., A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov., 1951, 38, 5–23 (in Russian; translated into German and combined with more material in [2]) Search in Google Scholar

[2] Alexandrow A.D., Über eine Verallgemeinerung der Riemannschen Geometrie, Schr. Forschungsinst. Math., 1957, 1, 33–84 Search in Google Scholar

[3] Bakry D., Émery M., Diffusions hypercontractives, In: Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 http://dx.doi.org/10.1007/BFb007584710.1007/BFb0075847Search in Google Scholar

[4] Bonciocat A.-I., Sturm K.-T., Mass transportation and rough curvature bounds for discrete spaces, J. Funct. Anal., 2009, 256(9), 2944–2966 http://dx.doi.org/10.1016/j.jfa.2009.01.02910.1016/j.jfa.2009.01.029Search in Google Scholar

[5] Bonnefont M., A discrete version of the Brunn-Minkowski inequality and its stability, Ann. Math. Blaise Pascal, 2009, 16(2), 245–257 http://dx.doi.org/10.5802/ambp.26410.5802/ambp.264Search in Google Scholar

[6] Dudley R.M, Real Analysis and Probability, The Wadsworth & Brooks/Cole Mathematics Series, Pacific Grove, 1989 Search in Google Scholar

[7] Erbar M., Maas J., Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 2012, 206(3), 997–1038 http://dx.doi.org/10.1007/s00205-012-0554-z10.1007/s00205-012-0554-zSearch in Google Scholar

[8] Forman R., Bochner’s method for cell complexes and combinatorial Ricci curvature, Discrete Comput. Geom., 2003, 29(3), 323–374 http://dx.doi.org/10.1007/s00454-002-0743-x10.1007/s00454-002-0743-xSearch in Google Scholar

[9] Fukaya K., Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 1987, 87(3), 517–547 http://dx.doi.org/10.1007/BF0138924110.1007/BF01389241Search in Google Scholar

[10] Gromov M., Hyperbolic groups, In: Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 http://dx.doi.org/10.1007/978-1-4613-9586-7_310.1007/978-1-4613-9586-7_3Search in Google Scholar

[11] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Boston, 1999 Search in Google Scholar

[12] Higuchi Y., Combinatorial curvature for planar graphs, J. Graph Theory, 2001, 38(4), 220–229 http://dx.doi.org/10.1002/jgt.1000410.1002/jgt.10004Search in Google Scholar

[13] Ishida M., Pseudo-curvature of a graph, Workshop on Topological Graph Theory, Yokohama National University, 1990 (lecture) Search in Google Scholar

[14] Lin Y., Yau S.-T., Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett., 2010, 17(2), 343–356 http://dx.doi.org/10.4310/MRL.2010.v17.n2.a1310.4310/MRL.2010.v17.n2.a13Search in Google Scholar

[15] Lott J., Villani C., Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math., 2009, 169(3), 903–991 http://dx.doi.org/10.4007/annals.2009.169.90310.4007/annals.2009.169.903Search in Google Scholar

[16] Maas J., Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 2011, 261(8), 2250–2292 http://dx.doi.org/10.1016/j.jfa.2011.06.00910.1016/j.jfa.2011.06.009Search in Google Scholar

[17] Mielke A., Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 2013, 48(1–2), 1–31 http://dx.doi.org/10.1007/s00526-012-0538-810.1007/s00526-012-0538-8Search in Google Scholar

[18] Ollivier Y., Ricci curvature of Markov chains on metric spaces, J. Funct. Anal., 2009, 256(3), 810–864 http://dx.doi.org/10.1016/j.jfa.2008.11.00110.1016/j.jfa.2008.11.001Search in Google Scholar

[19] Roe J., Lectures on Coarse Geometry, Univ. Lecture Ser., 31, American Mathematical Society, Providence, 2003 10.1090/ulect/031Search in Google Scholar

[20] Sturm K.-T., On the geometry of metric measure spaces I, Acta Math., 2006, 196(1), 65–131 http://dx.doi.org/10.1007/s11511-006-0002-810.1007/s11511-006-0002-8Search in Google Scholar

[21] Sturm K.-T., On the geometry of metric measure spaces II, Acta Math., 2006, 196(1), 133–177 http://dx.doi.org/10.1007/s11511-006-0003-710.1007/s11511-006-0003-7Search in Google Scholar

[22] Villani C., Topics in Optimal Transportation, Grad. Stud. Math., 58, American Mathematical Society, Providence, 2003 Search in Google Scholar

[23] Villani C., Optimal Transport, Grundlehren Math. Wiss., 338, Springer, Berlin, 2009 http://dx.doi.org/10.1007/978-3-540-71050-910.1007/978-3-540-71050-9Search in Google Scholar

Published Online: 2013-11-21
Published in Print: 2014-2-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-013-0332-7/html
Scroll to top button