Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 29, 2013

A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations

  • Abigail Wacher EMAIL logo
From the journal Open Mathematics

Abstract

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both in one dimension. Simulations are made for the two methods for: a) a travelling wave solution for the viscous Burgers’ equation, b) the Barenblatt selfsimilar analytical solution of the porous medium equation, and c) a waiting-time solution for the porous medium equation. Simulations are carried out for varying mesh sizes, and the numerical solutions are compared by computing errors in two ways. In the case of an analytic solution being available, the errors in the numerical solutions are computed directly from the analytic solution. In the case of no availability of an analytic solution, an approximation to the error is computed using a very fine mesh numerical solution as the reference solution.

MSC: 65M50; 35R37

[1] Baines M.J., Moving Finite Elements, Monographs on Numerical Analysis, Oxford Sci. Publ., Clarendon Press, Oxford University Press, New York, 1994 Search in Google Scholar

[2] Baines M.J., Hubbard M.E., Jimack P.K., A moving finite element method using monitor functions, School of Computing Research Report, 2003.04, University of Leeds, 2003, available at http://www.engineering.leeds.ac.uk/computing/research/publications/reports/2003/2003_04.png Search in Google Scholar

[3] Beckett G., Mackenzie J.A., Ramage A., Sloan D.M., On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution, J. Comput. Phys., 2001, 167(2), 372–392 http://dx.doi.org/10.1006/jcph.2000.667910.1006/jcph.2000.6679Search in Google Scholar

[4] Beckett G., Mackenzie J.A., Ramage A., Sloan D.M., Computational solution of two-dimensional unsteady PDEs using moving mesh methods, J. Comput. Phys., 2002, 182(2), 478–495 http://dx.doi.org/10.1006/jcph.2002.717910.1006/jcph.2002.7179Search in Google Scholar

[5] Blom J.G., Verwer J.G., On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines, Note NM-N8902, CWI, Amsterdam, 1989, available at http://oai.cwi.nl/oai/asset/5850/5850A.png Search in Google Scholar

[6] de Boor C., A Practical Guide to Splines, Appl. Math. Sci., 27, Springer, New York-Berlin, 1978 http://dx.doi.org/10.1007/978-1-4612-6333-310.1007/978-1-4612-6333-3Search in Google Scholar

[7] Cao W., Huang W., Russell R.D., An r-adaptive finite element method based upon moving mesh PDEs, J. Comput. Phys., 1999, 149(2), 221–244 http://dx.doi.org/10.1006/jcph.1998.615110.1006/jcph.1998.6151Search in Google Scholar

[8] Carlson N.N., Miller K., Design and application of a gradient-weighted moving finite element code I: in one dimension, SIAM J. Sci. Comput., 1998, 19(3), 728–765 http://dx.doi.org/10.1137/S106482759426955X10.1137/S106482759426955XSearch in Google Scholar

[9] Carlson N.N., Miller K., Design and application of a gradient-weighted moving finite element code II: in two dimensions, SIAM J. Sci. Comput., 1998, 19(3), 766–798 http://dx.doi.org/10.1137/S106482759426956110.1137/S1064827594269561Search in Google Scholar

[10] Dorfi E.A., Drury L.O’C., Simple adaptive grids for 1-D initial value problems, J. Comput. Phys., 1987, 69(1), 175–195 http://dx.doi.org/10.1016/0021-9991(87)90161-610.1016/0021-9991(87)90161-6Search in Google Scholar

[11] Hairer E., Wanner G., Solving Ordinary Differential Equations, II, Springer Ser. Comput. Math., 14, Springer, Berlin, 1991 http://dx.doi.org/10.1007/978-3-662-09947-610.1007/978-3-662-09947-6Search in Google Scholar

[12] Huang W., Ren Y., Russell R.D., Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal., 1994, 31(3), 709–730 http://dx.doi.org/10.1137/073103810.1137/0731038Search in Google Scholar

[13] Huang W., Russell R.D., Analysis of moving mesh partial differential equations with spatial smoothing, SIAM J. Numer. Anal., 1997, 34(3), 1106–1126 http://dx.doi.org/10.1137/S003614299325644110.1137/S0036142993256441Search in Google Scholar

[14] Huang W., Russell R.D., Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 1999, 20(3), 998–1015 http://dx.doi.org/10.1137/S106482759631524210.1137/S1064827596315242Search in Google Scholar

[15] Huang W., Russell R.D., Adaptive Moving Mesh Methods, Appl. Math. Sci., 174, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-1-4419-7916-210.1007/978-1-4419-7916-2Search in Google Scholar

[16] Huang W., Sun W., Variational mesh adaptation II: Error estimates and monitor functions, J. Comput. Phys., 2003, 184(2), 619–648 http://dx.doi.org/10.1016/S0021-9991(02)00040-210.1016/S0021-9991(02)00040-2Search in Google Scholar

[17] Jeffreys H., Jeffreys B.S., Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1946 Search in Google Scholar

[18] Jimack P.K., Wathen A.J., Temporal derivatives in the finite-element method on continuously deforming grids, SIAM J. Numer. Anal., 1991, 28(4), 990–1003 http://dx.doi.org/10.1137/072805210.1137/0728052Search in Google Scholar

[19] Lacey A.A., Initial motion of the free boundary for a nonlinear diffusion equation, IMA J. Appl. Math., 1983, 31(2), 113–119 http://dx.doi.org/10.1093/imamat/31.2.11310.1093/imamat/31.2.113Search in Google Scholar

[20] Lacey A.A, Ockendon J.R., Tayler A.B., “Waiting-time” solutions of a nonlinear diffusion equation, SIAM J. Appl. Math., 1982, 42(6), 1252–1264 10.1137/0142087Search in Google Scholar

[21] Miller K., Moving finite elements II, SIAM J. Numer. Anal., 1981, 18(6), 1033–1057 http://dx.doi.org/10.1137/071807110.1137/0718071Search in Google Scholar

[22] Miller K., A geometrical-mechanical interpretation of gradient-weighted moving finite elements, SIAM J. Numer. Anal., 1997, 34(1), 67–90 http://dx.doi.org/10.1137/S003614299426088410.1137/S0036142994260884Search in Google Scholar

[23] Miller K., Miller R.N., Moving finite elements I, SIAM J. Numer. Anal., 1981, 18(6), 1019–1032 http://dx.doi.org/10.1137/071807010.1137/0718070Search in Google Scholar

[24] Ortner C., Moving Mesh Partial Differential Equations, MSc thesis, Oxford University Computing Laboratory, Oxford, 2003 Search in Google Scholar

[25] Wacher A., String Gradient Weighted Moving Finite Elements for Systems of Partial Differential Equations, PhD thesis, Oxford University Computing Laboratory, Oxford, 2004 Search in Google Scholar

[26] Wacher A., Sobey I., String Gradient Weighted Moving Finite Elements in multiple dimensions with applications in two dimensions, SIAM J. Sci. Comput., 2007, 29(2), 459–480 http://dx.doi.org/10.1137/04061955710.1137/040619557Search in Google Scholar

[27] Wacher A., Sobey I., Miller K., String gradient weighted moving finite elements for systems of partial differential equations, Numerical Analysis Group Report, 03/15, Computing Laboratory, Oxford, 2003, available at http://eprints.maths.ox.ac.uk/1193/1/NA-03-15.png Search in Google Scholar

[28] Wathen A.J., Baines M.J., On the structure of the moving finite-element equations, IMA J. Numer. Anal., 1985, 5(2), 161–182 http://dx.doi.org/10.1093/imanum/5.2.16110.1093/imanum/5.2.161Search in Google Scholar

[29] White A.B. Jr., On selection of equidistributing meshes for two-point boundary-value problems, SIAM J. Numer. Anal., 1979, 16(3), 472–502 http://dx.doi.org/10.1137/071603810.1137/0716038Search in Google Scholar

[30] White A.B. Jr., On the numerical solution of initial-boundary value problems in one space dimension, SIAM J. Numer. Anal., 1982, 19(4), 683–697 http://dx.doi.org/10.1137/071904810.1137/0719048Search in Google Scholar

Published Online: 2013-1-29
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-012-0161-0/html
Scroll to top button