Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 15, 2014

L-alaninium perrhenate: crystal structure and non-linear optical properties

  • Vitor Rodrigues EMAIL logo , Maria Costa , Etelvina Gomes , Dmitry Isakov and Michael Belsley
From the journal Open Chemistry

Abstract

The crystal structure and non-linear optical properties of L-alaninium perrhenate, C3H8NO2+ ReO4 −, are reported. The protonated amino acid and the perrhenate anion have their usual geometries. The three-dimensional hydrogen-bonded network can be seen as a stacking of layers parallel to the (100) planes. Each layer is formed by chains of alternating positive and negative ions along the b and c axes. Hydrogen bonding of adjacent layers forms alternating chains along the a axis. A high damage threshold and a second-harmonic generation efficiency three times that of KDP make this new material potentially useful in non-linear optics.

[1] R. D. Wampler, G. J. Begue, N.J. Simpson, Cryst. Growth Des. 8, 2589 (2008) http://dx.doi.org/10.1021/cg700732n10.1021/cg700732nSearch in Google Scholar

[2] D. Braga, G.R. Desiraju, J.S. Miller, A. Guy Orpen, S.L. Price, Cryst. Eng. Comm. 4, 500 (2002) http://dx.doi.org/10.1039/b207466b10.1039/B207466BSearch in Google Scholar

[3] C. B. Aakeroy, A.M. Beatty, M. Nieuwenhuyzen, M. Zou, J. Mater. Chem. 8, 1385 (1998) http://dx.doi.org/10.1039/a800073e10.1039/a800073eSearch in Google Scholar

[4] D. S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals (Academic Press, New York 1987) Vol. 1 Search in Google Scholar

[5] J. Zyss, R. Masse, M. Bagieu-Beucher, J. Levy, Adv. Mater. 5(2), 120 (1993) http://dx.doi.org/10.1002/adma.1993005021010.1002/adma.19930050210Search in Google Scholar

[6] T. Hang, W. Zhang, H.-Y. Ye, R.-G. Xiong, Chem. Soc. Rev. 40, 3577 (2011) http://dx.doi.org/10.1039/c0cs00226g10.1039/c0cs00226gSearch in Google Scholar

[7] C. C. Evans, M. Bagieu-Beucher, R. Masse and J.F. Nicoud, Chem. Mater. 10(3), 847 (1998) http://dx.doi.org/10.1021/cm970618g10.1021/cm970618gSearch in Google Scholar

[8] M. Muthuraman, R. Masse, J.-F. Nicoud, G.R. Desiraju, Chem. Mater. 13(5), 1473 (2001) http://dx.doi.org/10.1021/cm000927y10.1021/cm000927ySearch in Google Scholar

[9] M. Szafranski, A. Katrusiak, G.J. McIntyre, Phys. Rev. Lett. 89, 215507 (2002) http://dx.doi.org/10.1103/PhysRevLett.89.21550710.1103/PhysRevLett.89.215507Search in Google Scholar

[10] D. Isakov, E. de Matos Gomes, M.S. Belsley, V.H. Rodrigues, M.M.R. Costa, Cryst. Eng. Comm. 14, 3767 (2012) http://dx.doi.org/10.1039/c2ce06652a10.1039/c2ce06652aSearch in Google Scholar

[11] L. Misoguti, A.T. Varela, F.D. Nunes, V.S. Bagnato, J. Mendes Filho, S.C. Zilio, E.E.A. Melo, Optical Materials 6, 47 (1996) http://dx.doi.org/10.1016/0925-3467(96)00032-810.1016/0925-3467(96)00032-8Search in Google Scholar

[12] R. Mohan Kumar, D. Rajan Babu, D. Jayaraman, R. Jayavel, K. Kitamura, Journal of Crystal Growth 275, e1935 (2005) http://dx.doi.org/10.1016/j.jcrysgro.2004.11.26010.1016/j.jcrysgro.2004.11.260Search in Google Scholar

[13] M. R. Hudson, D.G. Allis, W. Ouellette, B.S. Hudson, Phys. Chemistry Chemical Physics 11(41), 9474 (2009) http://dx.doi.org/10.1039/b905070a10.1039/b905070aSearch in Google Scholar

[14] C. J. Raj, S. Dinakaran, S. Krishnan, B. Milton Boaz, R. Robert, S.J. Das, Optics Communications 281(8), 2285 (2008) http://dx.doi.org/10.1016/j.optcom.2007.12.01910.1016/j.optcom.2007.12.019Search in Google Scholar

[15] D. Rajan Babu, D. Jayaraman, R. Mohan Kumar, R. Jayavel, J. Cryst. Growth 245, 121 (2002) http://dx.doi.org/10.1016/S0022-0248(02)01708-610.1016/S0022-0248(02)01708-6Search in Google Scholar

[16] M. Anbuchezhiyan, S. Ponnusamy, C. Muthamizhchelvan, K. Sivakumar, Materials Research Bulletin 45(8), 897 (2010) http://dx.doi.org/10.1016/j.materresbull.2010.04.02010.1016/j.materresbull.2010.04.020Search in Google Scholar

[17] H. J. Simpson Jnr., R.E. Marsh, Acta Cryst. 20, 550 (1966) http://dx.doi.org/10.1107/S0365110X6600122110.1107/S0365110X66001221Search in Google Scholar

[18] J. Donohue, J. Am. Chem. Soc. 72(2), 949 (1950) http://dx.doi.org/10.1021/ja01158a07910.1021/ja01158a079Search in Google Scholar

[19] Bruker(2007), APEX2 and SAINT (Bruker AXS Inc., Madison, Wisconsin, USA, 2007) Search in Google Scholar

[20] G. M. Sheldrick, Acta Cryst. A64, 112 (2008) http://dx.doi.org/10.1107/S010876730704393010.1107/S0108767307043930Search in Google Scholar PubMed

[21] A. L. Spek, J. Appl. Cryst. 36, 7 (2003) http://dx.doi.org/10.1107/S002188980202211210.1107/S0021889802022112Search in Google Scholar

[22] S. K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968) http://dx.doi.org/10.1063/1.165685710.1063/1.1656857Search in Google Scholar

[23] F. H. Allen, Acta Cryst. B58, 380 (2002) http://dx.doi.org/10.1107/S010876810200389010.1107/S0108768102003890Search in Google Scholar

[24] M. C. Etter, J.C. Macdonald, J. Bernstein, Acta Cryst. B 46(2), 256 (1990) http://dx.doi.org/10.1107/S010876818901292910.1107/S0108768189012929Search in Google Scholar

Published Online: 2014-5-15
Published in Print: 2014-10-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-014-0548-9/html
Scroll to top button