نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ی مهندسی انرژی، دانشگاه صنعتی شریف، صندوق پستی: 1114-14565، تهران- ایران

چکیده

به‌منظور تحلیل نوترونیک قلب رآکتورها، نیاز به توسعه نرم‌افزارهای محاسبات هسته‌ای جهت تولید ثابت‌های چند گروهی و حل عددی معادله پخش چند گروهی است. برای این منظور، از روش‌هایی استفاده می‌شود که علاوه بر دقت مناسب از حجم و زمان محاسبات بهینه‌ای برخوردار باشند. در این پژوهش به تئوری حاکم بر روش نودال بسط شار جریان متوسط و هم‌چنین مرتبه‌های بالاتر بسط شار پرداخته می‌شود. پس‌ازآن با گسسته‌سازی معادله پخش چند گروهی نوترون، نشان داده می‌شود که این روش‌ از زمان محاسبات بهینه و دقت خوبی بهره می‌برد. گسسته‌سازی معادله پخش مستقیم و الحاقی، برای هندسه شش‌گوش دوبعدی و در دو گروه انرژی انجام می‌شود و پس‌ازآن شبیه‌ساز قلب رآکتور -ACNEM3SH توسعه می‌یابد. جهت راستی‌آزمایی، محاسبات برای قلب رآکتور D2IAEA- انجام‌شده و با مقایسه با مراجع معتبر، نتیجه می‌شود که با افزایش مرتبه بسط شار از چندجمله‌ای‌های درجه‌دو به پنج، خطای محاسبات از 36/11‌% به 52/3‌% بهبود می‌یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Development of the SH3-ACNEM Simulator Program in order to Solving the Forward and Adjoint neutron Diffusion Equation for Hexagonal Geometry Reactor Cores

نویسندگان [English]

  • A. Kolali
  • D. Naghavi Dizaji
  • N. Vosoughi

Department of Energy Engineering, Sharif University of Technology, P.O.BOX: 14565-1114, Tehran - Iran

چکیده [English]

To perform a neutronic analysis of the reactor core, it is necessary to develop nuclear computing software to produce multi-group constants and numerical solutions to the multi-group neutron diffusion equation. For this purpose, some methods are used in nuclear calculation codes that, in addition to the necessary accuracy of cost and computing time, are optimal. This paper discusses the average current nodal expansion method as well as higher orders of flux expansion. Then, the discretization of the neutron diffusion equation with ACNEM is shown, which has the ability to calculate in optimum time and with good accuracy. The discretization of the Forward and Adjoint neutron diffusion equation is performed for two-dimensional hexagonal geometry in two energy groups and then the SH3-ACNEM reactor core simulator is developed. To verify; the calculations for the IAEA-2D reactor core are performed and compared with valid references. It results that the computational error improves from 11.36% to 3.52% by increasing the flux expansion order from quadratic polynomials to five.

کلیدواژه‌ها [English]

  • Simulator
  • Nuclear calculation
  • Diffusion equation
  • Hexagonal geometry
  • ACNEM
  1. D.G. Teixeira, F.C. da Silva, Pin-by-pin power reconstruction method using expansion in pseudo-harmonics, Annals of Nuclear Energy, 123, 145-15 (2019).

 

  1. T. Downar, et al, PARCS v2. 6 US NRC core neutronics simulator theory manual, Purdue University, West Lafayette, IN, (2004).

 

  1. J. Putney, A hexagonal geometry nodal expansion method for fast reactor calculations, Progress in Nuclear Energy, 18(1-2), 113-121 (1986).

 

  1. R.D. Lawrence, DIF3D nodal neutronics option for two-and three-dimensional diffusion theory calculations in hexagonal geometry [LMFBR], Argonne National Lab., IL (USA), (1983).

 

  1. S. Hall, The Development of a Nodal Method for the Analysis of PWR Cores with Advanced Fuels, (2013).

 

  1. N. Poursalehi, A. Zolfaghari, A. Minuchehr, Performance comparison of zeroth order nodal expansion methods in 3D rectangular geometry, Nuclear Engineering and Design, 252, 248-266 (2012).

 

  1. S.A. Hosseini, N. Vosoughi, J. Vosoughi, Neutron noise simulation using ACNEM in the hexagonal geometry, Annals of Nuclear Energy, 113, 246-255 (2018).

 

  1. J. Putney, A nodal expansion method for fast reactor calculations in hexagonal geometry, Annals of Nuclear Energy, 14(1), 9-23 (1987).

 

  1. G.I. Bell, S. Glasstone, Nuclear reactor theory, US Atomic Energy Commission, Washington, DC (United States), (1970).

 

  1. T.K. Kim, C.H. Kim, Solution of mathematical adjoint equation for a higher order nodal expansion method, Nuclear Science and Engineering, 123(3), 381-391 (1996).

 

  1. A.C. Center, Benchmark Problem Book, Report ANL-7416 (Suppl. 2), Argonne National Laboratory, Argonne, IL, (1977).

 

  1. A. Hebert, A Raviart–Thomas–Schneider solution of the diffusion equation in hexagonal geometry, Annals of Nuclear Energy, 35(3), 363-376 (2008).

 

  1. Y.A. Chao, Y. Shatilla, Conformal mapping and hexagonal nodal methods—II: implementation in the ANC-H code, Nuclear Science and Engineering, 121(2), 210-225 (1995).

 

  1. S.A. Hosseini, N. Vosoughi, Neutron noise simulation by GFEM and unstructured triangle elements, Nuclear Engineering and Design, 253, 238-258 (2012).

 

  1. U. Grundmann, F. Hollstein, A two-dimensional intranodal flux expansion method for hexagonal geometry, Nuclear Science and Engineering, 133(2), 201-212 (1999).