Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

The Aerosol Pollution Of The Atmosphere On The Example Of Lidar Sensing Data In St. Petersburg (Russia), Kuopio (Finland), Minsk (Belarus)

https://doi.org/10.24057/2071-9388-2023-2772

Abstract

The results of lidar sensing of aerosol pollution in St. Petersburg (Russia) were compared with ones located in Minsk (Belarus) and Kuopio (Finland) to assess the impact of large cities on atmospheric pollution by aerosol particles. For comparison, aerosol optical depth (AOD) data obtained at the three stations from 2014 to 2021 were used. Lidar sounding of atmospheric aerosols was carried out using aerosol Nd:YAG lasers operating at three wavelengths: 355, 532 and 1064 nm. Due to differences in the lidar station equipment characteristics and, consequently, in the lower limit for determining aerosols, the aerosol optical depth was compared in the range of heights from 800 to 1600 m at 355 and 532 nm. Since the compared stations do not have data for all years, the period from 2014 to 2016 was analyzed separately. The average annual AOD 355 in Minsk in the period 2014-2016 is almost the same as the average annual AOD in St. Petersburg. When comparing data in St. Petersburg and Minsk for the period 2014-2020, AOD 355 in St. Petersburg exceeds AOD 355 in Minsk by 1.46 times. AOD 532 nm in Minsk is larger than in St. Petersburg, regardless of the chosen comparison period. The average annual AOT 355 in Kuopio is lower than in Minsk and St. Petersburg by 2.1 times, while at a wavelength of 532 nm they are 3.6 times lower than in Minsk and 2.6 times in St. Petersburg. The calculated Angstrom exponent coefficient shows that the coarse mode in Minsk is higher than in St. Petersburg. The atmosphere over Kuopio has a lower content of aerosol particles. Since 2017, there was a steady excess of aerosol content over St. Petersburg compared to Minsk. Additionally, a comparison of the lidar data with the total AOD of AERONET stations located in Kuopio, Minsk and Peterhof (25 km from the lidar station in St. Petersburg) was carried out. The AOD obtained by lidar and AERONET method is in good agreement.

About the Authors

D. A. Samulenkov
St. Petersburg University
Russian Federation

7-9 Universitetskaya Embankment, St Petersburg, 199034



M. V. Sapunov
St. Petersburg University
Russian Federation

7-9 Universitetskaya Embankment, St Petersburg, 199034



References

1. Agarwal A., Mangal A., Satsangi A., Lakhani A., Kumari K. M. (2017). Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmospheric Research, 197, 121-131. DOI: 10.1016/j.atmosres.2017.06.027.

2. Aggarwal M., Whiteway J., Seabrook J., Gray L., Strawbridge K., Liu P., O’Brien J., Li S.-M. and McLaren R., (2018). Airborne lidar measurements of aerosol and ozone above the Canadian oil sands region. Atmospheric Measurement Techniques, 6, 3829-3849, DOI: 10.5194/amt-11-3829-2018.

3. Althausen D., Müller D., Ansmann A., Wandinger U., Hube, H., Clauder, E., Zoerner, S. (2000). Scanning 6-wavelength 11-channel aerosol lidar. Journal of Atmospheric and Oceanic Technology, 17, 1469–1482.

4. Ansmann A. and Müller D. (2005). Lidar and Atmospheric Aerosol Particles. In: C. Weitkamp, ed., LIDAR: range-resolved optical remote sensing of the atmosphere, W. T. Rhodes. ed. Singapore: Springer, 476, DOI: 10.1007/b106786.

5. Ansmann A., Ohneiser K., Mamouri R.-E., Knopf D. A., Veselovskii I., Baars H., Engelmann R., Foth A., Jimenez C., Seifert P. and Barja B. (2021). Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval. Atmospheric Chemistry and Physics, 21(12), 9779–9807, DOI: 10.5194/acp-21-9779-2021.

6. Baensch-Baltruschat B., Kocher B., Stock F., Reifferscheid G. (2022). Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Science of the Total Environment, 2020, 733, 137823. DOI: 10.1016/j.scitotenv.2020.137823.

7. Campbell, J. R., Ge, C., Wang, J., Welton, E. J., Bucholtz, A., Hyer, E. J., Reid, E. A., Chew, B. N., Liew, S. C., Salinas, S. V., Lolli, S., Kaku, K. C., Lynch, P., Mahmud, M., Mohamad, M. and Holben, B. N. (2016). Applying advanced ground-based remote sensing in the Southeast Asian maritime continent to characterize regional proficiencies in smoke transport modeling. J. Appl. Meteor. Climatol. 55: 3–22

8. Chaikovsky A., Ivanov A., Balin Yu., Elnikov A., Tulinov G., Plusnin I., Bukin O., Chen B. (2006). Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions. Proceedings of SPIE - The International Society for Optical Engineering, 6160, 616035. DOI: 10.1117/12.675920. Available at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6160/1/Lidar-network-CIS-LiNet-for-monitoring-aerosol-and-ozone-in/10.1117/12.675920.short [Accessed 30 March. 2023].

9. Chazette P., Totems J. (2023). Lidar Profiling of Aerosol Vertical Distribution in the Urbanized French Alpine Valley of Annecy and Impact of a Saharan Dust Transport Event. Remote Sensing, 15, 1070. DOI: 10.3390/rs15041070.

10. Chen G., Li Sh., Zhang Y., Zhang W., Li D., Wei X., He Y., Bell M. L., Williams G., Marks G. B., Jalaludin B., Abramson M. J., Guo Y. (2017). Effects of ambient PM1 air pollution on daily emergency hospital visits in China: an epidemiological study. Lancet Planet Health, 1(6), 6, e221–229. DOI: 10.1016/S2542-5196(17)30100-6.

11. Chubarova N., Vogel H., Androsova E., Kirsanov A., Popovicheva O., Vogel B. and Rivin G. (2022). Columnar and surface urban aerosol in the Moscow megacity according to measurements and simulations with the COSMO-ART model. Atmospheric Chemistry and Physics, 22(16), 10443–10466. DOI: 10.5194/acp-22-10443-2022.

12. Cogliani E. (2001). Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmospheric Environment, 35, 2871–2877. DOI: 10.1016/S1352-2310(01)00071-1.

13. Di Girolamo P., Summa D., Bhawar R., Di Iorio T., Cacciani M., Veselovskii I., Dubovik O., Kolgotin A. (2012). Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters. Atmospheric Environment, 50, 66-78. DOI: 10.1016/j.atmosenv.2011.12.061.

14. Filonchyk M., Peterson M., Yan H., Yang Sh., Chaikovsky A. (2021). Columnar optical characteristics and radiative properties of aerosols of the AERONET site in Minsk, Belarus. Atmospheric Environment, 249(15), 118237. DOI: 10.1016/j.atmosenv.2021.118237.

15. Flamant C., Pelon J., Chazette P., Trouillet V., Quinn P. K., Frouin R., Bruneau D., Leon J. F., Bates T. S., Johnson J. & Livingston J., (2000). Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2. Tellus B: Chemical and Physical Meteorology, 52B, 662-677. DOI: 10.3402/tellusb.v52i2.17126.

16. Forest V. (2021) Combined effects of nanoparticles and other environmental contaminants on human health - an issue often overlooked. NanoImpact, 23, art. 100344. DOI: 10.1016/j.impact.2021.100344.

17. Fussell J. C., Franklin M., Green D. C., Gustafsson M., Harrison R. M., Hicks W., Kelly F. J., Kishta F., Miller M. R., Mudway I. S., Oroumiyeh F., Selley L., Wang M. and Zhu Y. (2022). A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environmental Science & Technology, 56(11), 6813-6835. DOI: 10.1021/acs.est.2c01072

18. Guerrero-Rascado J. L., João Costa M., Bortoli D., Silva A. M., Lyamani H. and Alados-Arboledas L. (2010). Infrared lidar overlap function: an experimental determination. Optics Express, 18(19), 20350–20369. DOI: 10.1364/OE.18.020350.

19. Halldórsson T., Langerholc J. (1978) Geometrical form factors for the lidar function. Applied Optics, 17(2), 240–244. DOI: 10.1364/AO.17.000240.

20. Hext P.M., Rogers K.O., Paddle G.M. (1999). The health effects of PM2.5 (including ultrafine particles). Report no. 99/60. Brussels: CONCAWE Reports.

21. Hoff R. M., McCann K. J., Demoz B., Reichard J., Whiteman D. N., McGee T., McCormick M. P., Philbrick C. R., Strawbridge K., Moshary F., Gross B., Ahmed S., Venable D., Joseph E. (2002). Regional East Atmospheric Lidar Mesonet: REALM. ILRC, European Space Agency (ESA), 1–4. Available at: https://pdfs.semanticscholar.org/a7a3/e0d3e92e8fe89f1ff8738e2116a41f14e0a1.pdf [Accessed 30 March. 2023].

22. Kafle D. N., Coulter R. L. Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide. (2013). Journal of Geophysical Research (Atmospheres), 118(13), 7293-7308, DOI: 10.1002/jgrd.50536.

23. Khor W. Y., Hee W. Sh., Tan F., Lim Hw. S., Mat Jafri M. Z., Holben B. (2014). Comparison of Aerosol optical depth (AOD) derived from AERONET sunphotometer and Lidar system. IOP Conference Series: Earth, Environmental Science, 20(1), 012058, DOI: 10.1088/1755-1315/20/1/012058.

24. Klett J. D. (1981). Stable analytical inversion solution for processing lidar returns. Applied Optics, 20(2), 211–220. DOI: 10.1364/AO.20.000211.

25. Klett J. D. (1985). Lidar inversion with variable backscatter/extinction ratios. Applied Optics, 24, 1638–1643.

26. Kondratyev K. Ya., Ivlev L. S., Krapivin V. F., Varotsos C. A. (2006). Atmospheric Aerosol Properties: Formation, Processes and Impacts. Berlin: Springer. DOI: 10.1007/3-540-37698-4.

27. Kong D., He H., Zhao J., Ma J., Gong W. (2022). Aerosol Property Analysis Based on Ground-Based Lidar in Sansha, China. Atmosphere , 13(9), 1511, DOI: 10.3390/atmos13091511.

28. Kovalev V. A., and Eichinger W. E. (2004). Elastic lidar: theory, practice, and analysis methods. Hoboken: John Wiley & Sons.

29. Kovalev V. A., Petkov A., Wold C., Urbanski Sh. and Hao W. M. (2009). Determination of smoke plume and layer heights using scanning lidar data. Applied Optics, 48(28), 5287-5294. DOI: 10.1364/AO.48.005287.

30. Kovochich M., Parker J. A., Oh S. Ch., Lee J. P., Wagner S., Reemtsma T. and Unice K. M. (2021). Characterization of Individual Tire and Road Wear Particles in Environmental Road Dust, Tunnel Dust, and Sediment. Environmental Science & Technology Letters, 8, 1057−1064. DOI: 10.1021/acs.estlett.1c00811

31. Lisetskii F., Borovlev А., (2019). Monitoring of Emission of Particulate Matters and Air Pollution using Lidar, Belgorod, Russia. Aerosol and Air Quality Research, 19, 504–515. DOI:10.4209/aaqr.2017.12.0593.

32. Ma X., Wang C., Han G., Ma Y., Li S., Gong W., Chen J., (2019). Regional Atmospheric Aerosol Pollution Detection Based on LiDAR Remote Sensing. Remote Sensing, 11(20):2339. DOI: 10.3390/rs11202339.

33. Mallone S., Stafoggia M., Faustini A., Gobbi G. P., Marconi A. and Forastiere F. (2011). Saharan Dust and Associations between Particulate

34. Matter and Daily Mortality in Rome, Italy. Environmental Health Perspectives, 119(10), 1409–1414. DOI: 10.1289/ehp.1003026.

35. McGill M. J., Hlavka D. L., Hart W. D., Welton E. J. and Campbell J. R. (2003). Airborne Lidar Measurements of Aerosol Optical Properties during SAFARI-2000. Journal of Geophysical Research: Atmospheres, 108 (D13), 8493. DOI: 10.1029/2002jd002370.

36. Mona L., Amodeo A., Pandolfi M. and Pappalardo G. (2006). Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements. Journal Of Geophysical Research, [online] 111(D16203). DOI:10.1029/2005JD006569. Available at: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2005JD006569 [Accessed 30 March. 2023].

37. Mona L., Liu Z., Muller D., Omar A., Papayannis A., Pappalardo G., Sugimoto N. and Vaughan M. (2012). Lidar Measurements for Desert Dust Characterization: An Overview. Advances in Meteorology, [online] 2012, 356265, DOI:10.1155/2012/356265. . Available at: https://downloads.hindawi.com/journals/amete/2012/356265.pdf [Accessed 30 March]. 2023].

38. Nagy G., Merényi A., Domokos E., Rédey Á., Yuzhakova T. (2014), Monitoring of air pollution spread on the car-free day in the city of Veszprém. International Journal Of Energy And Environment, 5(6), 679–684.

39. Nishizawa T., Sugimoto N., Matsui I., Shimizu A., Higurashi A. and Jin Y. (2016). The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress. EPJ Web of Conferences, [online] 119, 19001. DOI: 10.1051/epjconf/201611919001. Available at: https://www.epj-conferences.org/articles/epjconf/pdf/2016/14/epjconf_ilrc2016_19001.pdf [Accessed 30 March. 2023].

40. Pandey A. et al. (2020). Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019. Lancet Planet Health, 5(1), e25–38. DOI: 10.1016/S2542-5196(20)30298-9.

41. Papagiannopoulos N. et al. (2020). An EARLINET early warning system for atmospheric aerosol aviation hazards. Atmospheric Chemistry and Physics, 20, 10775–10789. DOI: 10.5194/acp-20-10775-2020.

42. Samulenkov D. A., Sapunov M. V, Mel’nikova I. N. (2020). Lidarnoe zondirovanie aerozol’nyh zagryaznenij v atmosfere po marshrutu Sankt-Peterburg – Voronezhskaya oblast’–Belgorodskaya oblast’. Current Problems in Remote Sensing of the Earth from Space, 17(3), 223–230, (in Russian). DOI: 10.21046/2070-7401-2020-17-3-223-230.

43. Schraufnagel D. E. (2020). The health effects of ultrafine particles. Experimental & Molecular Medicine, 52, 311–317. DOI:10.1038/s12276-020-0403-3.

44. Schraufnagel D. E., Balmes J. R., Cowl C. T., De Matteis S., Jung S.-H., Mortimer K., Perez-Padilla R., Rice M. B., Riojas-Rodriguez H., Sood A., Thurston G. D., To T., Vanker A., Wuebbles D. J. (2016). Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. CHEST, 155(2), 409–416. DOI: 10.1016/j.chest.2018.10.042.

45. Sharma Sh., Chandra M. & Kota S. H. (2020). Health Effects Associated with PM2.5: a Systematic Review. Current Pollution Reports, 6(4), 345–367. DOI: 10.1007/s40726-020-00155-3.

46. Shi Y., Liu W., Dong Y., Zhao X., Xiang Y., Zhang T., Lv L., (2022). Atmospheric aerosol particle size distribution from Lidar data based on the lognormal distribution mode. Heliyon, 8(8), e09975. DOI: 10.1016/j.heliyon.2022.e09975.

47. Subramanian R., Kagabo A. S., Baharane V., Guhirwa S., Sindayigaya C., Malings C., Williams N. J., Kalisa E., Li H., Adams P., Robinson A. L., DeWitt H. L., Gasore J. and Jaramillo P. (2020). Air pollution in Kigali, Rwanda: spatial and temporal variability, source contributions, and the impact of car-free Sundays. Clean Air Journal, 30(2), 15. DOI: 10.17159/caj/2020/30/2.8023.

48. Tuan A. D., Anh N. X., Hung T. P. (2017). The simulation of aerosol Lidar developed at the Institute of Geophysics. Journal of Marine Science and Technology, 17(4B), 51–57. DOI: 10.15625/1859-3097/17/4B/12991.

49. Vaughan G., Wareing D. and Ricketts H. (2021). Measurement Report: Lidar measurements of stratospheric aerosol following the 2019 Raikoke and Ulawun volcanic eruptions. Atmospheric Chemistry and Physics, 21(7), 5597–5604, DOI: 10.5194/acp-21-5597-2021.

50. Volkova K.A., Poberovsky A.V., Timofeev Yu.M., Ionov D.V., Holben B.N., Smirnov A., Slutsker I. (2018). Aerosol optical characteristics retrieved from measurements of CIMEL sun photometer (AERONET) near Saint Petersburg. Оптика атмосферы и океана, 6, 425-431, (in Russian) DOI: 10.15372/AOO20180601.

51. Wei Y., Wang Y., Di Q., Choirat Ch., Wang Y., Koutrakis P., Zanobetti A., Dominici F., Schwartz J. D. (2019). Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study. BMJ, 367, l6258. DOI: 10.1136/bmj.l6258.

52. Welton E. J., Stewart S. A., Lewis J. R., Belcher L. R., Campbell J.R. and Lolli S. (2018). Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL. EPJ Web of Conferences, [online] 176, 09003. DOI: 10.1051/epjconf/201817609003. Available at: https://www.epj-conferences.org/articles/epjconf/pdf/2018/11/epjconf_ilrc28_09003.pdf [Accessed 30 March. 2023].

53. Xie Ch., Nishizawa T., Sugimoto N., Matsui I. and Wang Z. (2008). Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China. Applied Optics, 47(27), 4945–4951. DOI: 10.1364/AO.47.004945.

54. Xie Ch.-B., Zhou J., Sugimoto N., Wang Z.-F. (2010). Aerosol Observation with Raman LIDAR in Beijing, China. Journal of the Optical Society of Korea, 14(3), 215-220.

55. Yegorov A. D., Kopp I. Z., Perelma A. Y., (1995). Air aerosol pollution and lidar measurements. Proceedings of SPIE - The International Society for Optical Engineering, 2505, 38–43. DOI: 10.1117/12.219649.

56. Yin Zh., Yi F., Liu F., He Y., Zhang Y., Yu Ch., Zhang Y., (2021). Long-term variations of aerosol optical properties over Wuhan with polarization lidar. Atmospheric Environment, 259,118508, DOI: 10.1016/j.atmosenv.2021.118508.

57. Zhdanova E. Yu., Chubarova N. Ye., Lyapustin A. I. (2020). Assessment of urban aerosol pollution over Moscow megacity by MAIAC aerosol product. Atmospheric Measurement Techniques, 13(2), 877-891. DOI: 10.5194/amt-2019-325.

58. Zhu J., Liu D., Zeng Q. (2011). Analysis of the Aerosol Optical Depth and the Air Quality in Qingdao, China. Journal Of Software, 6(7), 1194–1200. DOI: 10.4304/jsw.6.7.1194-1200.

59. Zuev V. E., Zuev V. V. (1992). Distancionnoe opticheskoe zondirovanie atmosfery (Remote optical sensing of the atmosphere). St. Petersburg: Gidrometeoizdat.


Review

For citations:


Samulenkov D.A., Sapunov M.V. The Aerosol Pollution Of The Atmosphere On The Example Of Lidar Sensing Data In St. Petersburg (Russia), Kuopio (Finland), Minsk (Belarus). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(4):156-163. https://doi.org/10.24057/2071-9388-2023-2772

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)