1. Home
  2. 2024-V10-I1 Special Issue
  3. The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame
Statistics

Article Views: 62

PDF Downloads: 31

  • Date of Publication : 2024-04-02 Article Type : Research Article
  • The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame

    Ahmed Manguri*¹’ ², Najmadeen Saeed ²’ ³, Farzin Kazemi ¹, Neda Asgarkhani ¹, and Robert Jankowski ¹

    Affiliation

    ¹ Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
    ² Civil Engineering Department, University of Raparin, Iraq.
    ³ Tishk International University, Erbil, Kurdistan Region, Iraq.
    *Corresponding Author


    ORCID :

    Ahmed Manguri: https://orcid.org/0000-0002-3789-0006Najmadeen Saeed: https://orcid.org/0000-0001-7074-0256Farzin Kazemi: https://orcid.org/0000-0002-2448-1465Neda Asgarkhani: https://orcid.org/0000-0002-0756-8438Robert Jankowski: https://orcid.org/0000-0002-6741-115X


    DOI :

    https://doi.org/10.23918/eajse.v10i1p7


    Article History

    Received: 2022-11-21

    Revised: 2023-04-01

    Accepted: 2024-02-18

    Abstract

    This paper describes the significance of the minimum actuation limit per actuator while controlling the shape of a single-layer frame dome. The algorithms that perform optimum shape controlling allow the user to assign the minimum allowable actuation per actuator, which means the actuators with an actuation of less than the assigned amount are assumed to be passive; thus, they are excluded. In this study, the deformed shape of a numerical model of a single-layer dome is reshaped. At the same time, the minimum limit is assumed to vary between 0.1mm and 1 mm to investigate how the outcomes are affected. The results show that changes in the minimum allowable actuation significantly affect the number of necessary actuators and the final form of the structure in terms of nodal displacements and stresses. The study suggests using the limit of 0.7 mm, which provides the optimum number of actuators while the nodal displacements are controlled.

    Keywords :

    Dome Structures; Actuators; Actuation; Optimization; Structural Control


    [1]    Bradshaw, R., et al., Special structures: past, present, and future. Journal of structural engineering, 2002. 128(6): p. 691-709. https://doi.org/10.1061/ ASCE0733-9445 2002128:6 691.

    Google Scholar
    [2]    Winterstetter, T., et al., Innovative Bautechnik im Herzen Asiens–die EXPO 2017 in Astana, Kasachstan. ce/papers, 2018. 2(1): p. 51-57. https://doi.org/10.1002/cepa.630.

    Google Scholar
    [3]    Knebel, K., J. Sanchez-Alvarez, and S. Zimmermann, The structural making of the Eden Domes. Space Structures, 2002. 5(1): p. 245-254.

    Google Scholar
    [4]    Imbert, F., et al., Concurrent geometric, structural and environmental design: Louvre Abu Dhabi, in Advances in architectural geometry 2012. 2013, Springer. p. 77-90.

    Google Scholar
    [5]    Chang, X. and X. Haiyan. Using sphere parameters to detect construction quality of spherical buildings. in 2nd International Conference on Advanced Computer Control. 2010 Shenyang, China: IEEE. https://doi.org/10.1109/ICACC.2010.5487073.

    Google Scholar
    [6]    Mahmood, A., et al. Optimized Stress and Geometry Control of Spherical structures under Lateral Loadings. in 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC). 2022. https://doi.org/10.1109/IEC54822.2022.9807455.

    Google Scholar
    [7]    Manguri, A., N. Saeed, and B. Haydar. Optimal Shape Refurbishment of Distorted Dome Structure with Safeguarding of Member Stress. in 7th International Engineering Conference “Research & Innovation amid Global Pandemic"(IEC). 2021. Erbil, Iraq: IEEE. https://doi.org/10.1109/IEC52205.2021.9476107.

    Google Scholar
    [8]    Weeks, C.J., Static shape determination and control of large space structures: I. The flexible beam. Journal of Dynamic Systems, Measurement, and Control, 1984. 106(4): p. 261-266. http://dx.doi.org/10.1115/1.3140683.

    Google Scholar
    [9]    Weeks, C.J., Static shape determination and control of large space structures: II. A large space antenna. Journal of Dynamic Systems, Measurement, and Control, 1984. 106(4): p. 267-272. https://doi.org/10.1115/1.3140684.

    Google Scholar
    [10]    You, Z., Displacement control of prestressed structures. Computer Methods in Applied Mechanics and Engineering, 1997. 144(1): p. 51-59. http://dx.doi.org/10.1016/S0045-7825(96)01164-4.

    Google Scholar
    [11]    Nyashin, Y., V. Lokhov, and F. Ziegler, Stress-free displacement control of structures. Acta Mechanica, 2005. 175(1): p. 45-56. https://doi.org/10.1007/s00707-004-0191-1.

    Google Scholar
    [12]    Manguri, A.A., A.S.K. Kwan, and N.M. Saeed, Adjustment for shape restoration and force control of cable arch stayed bridges. International Journal of Computational Methods and Experimental Measurements, 2017. 5(4): p. 514-521. http://dx.doi.org/10.2495/CMEM-V5-N4-514-521.

    Google Scholar
    [13]    Saeed, N., et al. Shape Restoration of Deformed Egg-Shaped Single Layer Space Frames. in 2019 International Conference on Advanced Science and Engineering (ICOASE). 2019. Duhok, Kurdistan Region, Iraq: IEEE. http://dx.doi.org/10.1109/ICOASE.2019.8723714.

    Google Scholar
    [14]    Irschik, H., A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 2002. 24(1): p. 5-11. http://dx.doi.org/10.1016/S0141-0296(01)00081-5.

    Google Scholar
    [15]    Haftka, R.T. and H.M. Adelman, Effect of sensor and actuator errors on static shape control for large space structures. AIAA Journal, 1987. 25(1): p. 134-138. https://doi.org/10.2514/3.9592.

    Google Scholar
    [16]    Koconis, D.B., L.P. Kollar, and G.S. Springer, Shape control of composite plates and shells with embedded actuators. I. Voltages specified. Journal of Composite Materials, 1994. 28(5): p. 415-458. https://doi.org/10.1177/002199839402800503.

    Google Scholar
    [17]    Hadjigeorgiou, E., G. Stavroulakis, and C. Massalas, Shape control and damage identification of beams using piezoelectric actuation and genetic optimization. International Journal of Engineering Science, 2006. 44(7): p. 409-421. https://doi.org/10.1016/j.ijengsci.2006.02.004.

    Google Scholar
    [18]    Hu, Y.-R. and G. Vukovich, Active robust shape control of flexible structures. Mechatronics, 2005. 15(7): p. 807-820. https://doi.org/10.1016/j.mechatronics.2005.02.004.

    Google Scholar
    [19]    Salama, M., et al., Shape adjustment of precision truss structures: analytical and experimental validation. Smart Materials and Structures, 1993. 2(4): p. 240. https://doi.org/10.1088/0964-1726/2/4/005.

    Google Scholar
    [20]    Manguri, A., N. Saeed, and R. Jankowski, Controlling nodal displacement of pantographic structures using matrix condensation and interior-point optimization: A numerical and experimental study. Engineering Structures, 2024. 304: p. 117603. https://doi.org/10.1016/j.engstruct.2024.117603.

    Google Scholar
    [21]    Manguri, A., et al., Bending Moment Control and Weight Optimization in Space Structures by Adding Extra Members in the Optimal Locations. Advances in Science and Technology Research Journal, 2023. 17(4): p. 313-324. https://doi.org/10.12913/22998624/169573.

    Google Scholar
    [22]    Li, X., et al., Topology optimization for prestressed cable-truss structure considering geometric nonlinearity. Structural and Multidisciplinary Optimization, 2023. 66(9): p. 201. https://doi.org/10.1007/s00158-023-03646-1.

    Google Scholar
    [23]    Høghøj, L.C., et al., Simultaneous shape and topology optimization of wings. Structural and Multidisciplinary Optimization, 2023. 66(5): p. 116. https://doi.org/10.1007/s00158-023-03569-x.

    Google Scholar
    [24]    Golecki, T., et al., Topology optimization of high-speed rail bridges considering passenger comfort. Structural and Multidisciplinary Optimization, 2023. 66(10): p. 215. https://doi.org/10.1007/s00158-023-03666-x.

    Google Scholar
    [25]    Manguri, A., et al., Buckling and shape control of prestressable trusses using optimum number of actuators. Scientific Reports, 2023. 13(1): p. 3838. http://dx.doi.org/10.1038/s41598-023-30274-y.

    Google Scholar
    [26]    Furuya, H. and R.T. Haftka, Placing actuators on space structures by genetic algorithms and effectiveness indices. Structural Optimization, 1995. 9(2): p. 69-75. https://doi.org/10.1007/BF01758822.

    Google Scholar
    [27]    Kwan, A. and S. Pellegrino, Prestressing a space structure. AIAA journal, 1993. 31(10): p. 1961-1963. https://doi.org/10.2514/3.11876.

    Google Scholar
    [28]    Saeed, N.M., A.A.H. Manguri, and A.M. Adabar, Shape and force control of cable structures with minimal actuators and actuation. International Journal of Space Structures, 2021. 36(3): p. 241-248. https://doi.org/10.1177/09560599211045851.

    Google Scholar
    [29]    Saeed, N.M., et al., Static Shape and Stress Control of Trusses with Optimum Time, Actuators and Actuation. International Journal of Civil Engineering, 2023. 21(3): p. 379-390. http://dx.doi.org/10.1007/s40999-022-00784-3.

    Google Scholar
    [30]    Manguri, A., et al., Optimum number of actuators to minimize the cross-sectional area of prestressable cable and truss structures. Structures, 2023. 47: p. 2501-2514. https://doi.org/10.1016/j.istruc.2022.12.031.

    Google Scholar
    [31]    Saeed, N., A. Manguri, and S. Al-Zahawi. Optimum Geometry and Stress Control of Deformed Double Layer Dome for Gravity and Lateral Loads. in 2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic"(IEC). 2021. Erbil, Iraq: IEEE. https://doi.org/10.1109/IEC52205.2021.9476094.

    Google Scholar
    [32]    Manguri, A., et al., Optimal Reshaping and Stress Control of Double-Layer Spherical Structures Under Vertical Loadings. Archives of Civil Engineering, 2022. 68(4).  https://doi.org/10.24425/ace.2022.143056.

    Google Scholar
    [33]    Saeed, N., et al., Using Minimum Actuators to Control Shape and Stress of a Double Layer Spherical Model Under Gravity and Lateral Loadings. Advances in Science and Technology Research Journal, 2022. 16(6): p. 1-13. https://doi.org/10.12913/22998624/155214.

    Google Scholar
    [34]    Chen, J., et al. Optimal Placement of Actuators for Active Vibration Control Using EER and Genetic Algorithm. in 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). 2019. https://doi.org/10.1109/ICMAE.2019.8880980.

    Google Scholar
    [35]    Dhingra, A.K. and B.H. Lee, Optimal placement of actuators in actively controlled structures. Engineering Optimization, 1994. 23(2): p. 99-118. https://doi.org/10.1080/03052159408941347.

    Google Scholar
    [36]    Du, J., et al., Optimal Placement of Actuators Via Sparse Learning for Composite Fuselage Shape Control. Journal of Manufacturing Science and Engineering, 2019. 141(10).  https://doi.org/10.1115/1.4044249.

    Google Scholar
    [37]    Nie, G.-b., et al., Seismic performance evaluation of single-layer reticulated dome and its fragility analysis. Journal of Constructional Steel Research, 2014. 100: p. 176-182.

    Google Scholar



    @article{manguri,ahmedandsaeed,najmadeenandkazemi,farzinandasgarkhani,nedaandjankowski,robert2024,
     author = {Manguri, Ahmed and Saeed, Najmadeen and Kazemi, Farzin and Asgarkhani, Neda and Jankowski, Robert},
     title = {The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame},
     journal = {Eurasian J. Sci. Eng},
     volume = {10},
     number = {1},
     pages = {77-88},
     year = {2024}
    }
    Copy

    Manguri, A., Saeed, N, Kazemi, F., Asgarkhani, N., & Jankowski, R. (2024). The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame. Eurasian J. Sci. Eng, 10(1),77-88.

    Copy

    Manguri, Ahmed, et al. "The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame." Eurasian J. Sci. Eng, 10.1, (2024), pp.77-88.

    Copy

    Manguri, A., Saeed, N, Kazemi, F., Asgarkhani, N., & Jankowski, R. (2024) "The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame", Eurasian J. Sci. Eng, 10(1), pp.77-88.

    Copy

    Manguri A, Saeed N, Kazemi F, Asgarkhani N, Jankowski R. The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame. Eurasian J. Sci. Eng. 2024; 10(1):77-88.

    Copy

    Under Development

    Under Development

    Under Development

  • The Effect of Minimum Actuation Limit in Shape Control of a Single-Layer Dome Frame