Metabolomic Analysis of Skin Biopsies from Patients with Atopic Dermatitis Reveals Hallmarks of Inflammation, Disrupted Barrier Function and Oxidative Stress

Authors

  • Liis Ilves Department of Dermatology and Venereology, University of Tartu, EE-50417 Tartu, Estonia
  • Aigar Ottas
  • Bret Kaldvee
  • Kristi Abram
  • Ursel Soomets
  • Mihkel Zilmer
  • Viljar Jaks
  • Külli Kingo

DOI:

https://doi.org/10.2340/00015555-3766

Keywords:

atopic dermatitis, dermatology, biomarkers, meta­bolomics

Abstract

The main objectives of this study were to characterize the metabolomic profile of lesional skin of patients with atopic dermatitis, and to compare it with non- lesional skin of patients with atopic dermatitis and skin of controls with no dermatological disease. Skin-punch biopsies were collected from 15 patients and 17 controls. Targeted analysis of 188 metabolites was conducted. A total of 77 metabolites and their ratios were found, which differed significantly between lesional skin of atopic dermatitis, non-lesional skin of atopic dermatitis and skin of controls. The metabolites were members of the following classes: amino acids, biogenic amines, acylcarnitines, sphingomyelins or phosphatidylcholines, and the most significant differences be­tween the groups compared were in the concentrations of putrescine, SM.C26.0 and SM.C26.1. The alterations in metabolite levels indicate inflammation, impaired barrier function, and susceptibility to oxidative stress in atopic skin.

Downloads

Download data is not yet available.

References

Barnetson R St C, Rogers M. Childhood atopic eczema. BMJ 2002; 324: 1376-1379.

DOI: https://doi.org/10.1136/bmj.324.7350.1376

Yang EJ, Beck KM, Sekhon S, Bhutani T, Koo J. The impact of pediatric atopic dermatitis on families: a review. Pediatr Dermatol 2019; 36: 66-71.

DOI: https://doi.org/10.1111/pde.13727

Thyssen JP, Hamann CR, Skov L, Egeberg A, Linneberg A, Dantoft TM, et al. Atopic dermatitis is associated with anxiety, depression, and suicidal ideation, but not with psychiatric hospitalization or suicide. Allergy 2018; 73: 214-220.

DOI: https://doi.org/10.1111/all.13231

Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab 2015; 66: 8-16.

DOI: https://doi.org/10.1159/000370220

Asher MI, Montefort S, Bjorksten B, Lai CKW, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006; 368: 733-743.

DOI: https://doi.org/10.1016/S0140-6736(06)69283-0

Weidinger S, Novak N. Atopic dermatitis. Lancet 2016; 387: 1109-1122.

DOI: https://doi.org/10.1016/S0140-6736(15)00149-X

Irvine AD, McLean WHI, Leung DYM. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 2011; 365: 1315-1327.

DOI: https://doi.org/10.1056/NEJMra1011040

del Giudice MM, Decimo F, Leonardi S, Maioello N, Amelio, R, Capasso A, et al. Immune dysregulation in atopic dermatitis. Allergy Asthma Proc 2006; 27: 451-455.

DOI: https://doi.org/10.2500/aap.2006.27.2887

Leung DYM. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int 2013; 62: 151-161.

DOI: https://doi.org/10.2332/allergolint.13-RAI-0564

Boothe WD, Tarbox JA, Tarbox MB. Atopic dermatitis: pathophysiology. Adv Exp Med Biol 2017; 1027: 21-37.

DOI: https://doi.org/10.1007/978-3-319-64804-0_3

Ottas A, Fishman D, Okas T-L, Püssa T, Toomik P, Märtson A, et al. Blood serum metabolome of atopic dermatitis: altered energy cycle and the markers of systemic inflammation. PLoS One 2017; 12: 1-14.

DOI: https://doi.org/10.1371/journal.pone.0188580

Huang Y, Chen G, Liu X, Shao Y, Gao P, Xin C, et al. Serum metabolomics study and eicosanoid analysis of childhood atopic dermatitis based on liquid chromatography-mass spectrometry. J Proteome Res 2014; 13: 5715-5723.

DOI: https://doi.org/10.1021/pr5007069

Hotze M, Baurecht H, Rodríguez E, Chapman-Rothe N, Ollert M, Fölster-Holst R, et al. Increased efficacy of omalizumab in atopic dermatitis patients with wild-type filaggrin status and higher serum levels of phosphatidylcholines. Allergy 2014; 69: 132-135.

DOI: https://doi.org/10.1111/all.12234

Assfalg M, Bortoletti E, D'Onofrio M, Pigozzi R, Molinari H, Boner AL, et al. An exploratory (1) H-nuclear magnetic resonance metabolomics study reveals altered urine spectral profiles in infants with atopic dermatitis. Br J Dermatol 2012; 166: 1123-1125.

DOI: https://doi.org/10.1111/j.1365-2133.2011.10711.x

Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Anal Chem 2010; 29: 111-119.

DOI: https://doi.org/10.1016/j.trac.2009.12.003

R Core Team (2018) R: A language and environment for statistical computing. The R Foundation for Statistical Computing; Vienna, Austria. [Date accessed: Nov 2018] Available from: https://www.R-project.org/.

Bae D-H, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862: 2053-2068.

DOI: https://doi.org/10.1016/j.bbagen.2018.06.004

Iacomino G, Picariello G, D'Agostino L. DNA and nuclear aggregates of polyamines. Biochim Biophys Acta 2012; 1823: 1745-1755.

DOI: https://doi.org/10.1016/j.bbamcr.2012.05.033

Williams K. Interactions of polyamines with ion channels. Biochem J 1997; 325: 289-297.

DOI: https://doi.org/10.1042/bj3250289

Moinard C, Cynober L, de Bandt JP. Polyamines: metabolism and implications in human diseases. Clin Nutr 2005; 24: 184-197.

DOI: https://doi.org/10.1016/j.clnu.2004.11.001

Casero RA Jr, Stewart TM, Pegg AE. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer 2018; 18: 681-695.

DOI: https://doi.org/10.1038/s41568-018-0050-3

Murray-Stewart TR, Woster PM, Casero RA Jr. Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2016; 473: 2937-2953.

DOI: https://doi.org/10.1042/BCJ20160383

Minois N. Molecular basis of the 'anti-aging' effect of spermidine and other natural polyamines - a mini-review. Gerontology 2014; 60: 319-326.

DOI: https://doi.org/10.1159/000356748

Bjelakovi? G, Stojanovi? I, Jevtovi? Stoimenov T, Pavlovi? D, Koci? G, Rossi S, et al. Metabolic correlations of glucocorticoids and polyamines in inflammation and apoptosis. Amino Acids 2010; 39: 29-43.

DOI: https://doi.org/10.1007/s00726-010-0489-3

Lagishetty CV, Naik SR. Polyamines: potential anti-inflammatory agents and their possible mechanism of action. Indian J Pharmacol 2008; 40: 121-125.

DOI: https://doi.org/10.4103/0253-7613.42305

Jänne J, Alhonen L, Keinanen TA, Pietila M, Uimari A, Pirinen E, et al, Animal disease models generated by genetic engineering of polyamine metabolism. J Cell Mol Med 2005; 9: 865-882.

DOI: https://doi.org/10.1111/j.1582-4934.2005.tb00385.x

Lim HK, Rahim AB, Leo VI, Das S, Lim TC, Uemura T, et al. Polyamine regulator AMD1 promotes cell migration in epidermal wound healing. J Invest Dermatol 2018; 138: 2653-2665.

DOI: https://doi.org/10.1016/j.jid.2018.05.029

Vallance P, Leone A. Accumulation of an endogenous inhibitor or nitric oxide synthesis in chronic renal failure. Lancet 1992; 339: 572-575.

DOI: https://doi.org/10.1016/0140-6736(92)90865-Z

Closs EI, Habermeier A, Förstermann U, Basha FZ. Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1997; 1: 65-73.

DOI: https://doi.org/10.1006/niox.1996.0106

Tousoulis D, Kampoli A-M, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012; 10: 4-18.

DOI: https://doi.org/10.2174/157016112798829760

Schepers E, Barreto DV, Liabeuf S, Glorieux G, Eloot S, Barreto FC, et al. Symmetric dimethylarginine as a proinflammatory agent in chronic kidney disease. Clin J Am Soc Nephrol 2011; 6: 2374-2383.

DOI: https://doi.org/10.2215/CJN.01720211

Patel L, Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, et al. Symmetric dimethylarginine is a stronger predictor of mortality risk than asymmetric dimethylarginine among older people with kidney disease. Ann Clin Biochem 2019; 56: 367-374.

DOI: https://doi.org/10.1177/0004563218822655

Franceschelli S, Ferrone A, Pesce M, Riccioni G, Speranza L. Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease. Int J Mol Sci 2013; 14: 24412-24421.

DOI: https://doi.org/10.3390/ijms141224412

Surdacki A, Martens-Lobenhoffer J, Wloch A, Marewicz E, Rakowski T, Wieczorek-Surdacka E, et al. Elevated plasma asymmetric dimethyl-L-arginine levels are linked to endothelial progenitor cell depletion and carotid atherosclerosis in rheumatoid arthritis. Arthritis Rheum 2007; 56: 809-819.

DOI: https://doi.org/10.1002/art.22424

Bilgic O, Altinyazar HC, Baran H, Unlu A. Serum homocysteine, asymmetric dimethyl arginine (ADMA) and other arginine-NO pathway metabolite levels in patients with psoriasis. Arch Dermatol Res 2015; 307: 439-444.

DOI: https://doi.org/10.1007/s00403-015-1553-3

Pohla L, Ottas A, Kaldvee B, Abram K, Soomets U, Zilmer M, et al. Hyperproliferation is the main driver of metabolomic changes in psoriasis lesional skin. Sci Rep 2020; 10: 1-7.

DOI: https://doi.org/10.1038/s41598-020-59996-z

Dimitriades V, Rodriguez PC, Zabaleta J, Ochoa AC. Arginase I levels are decreased in the plasma of pediatric patients with atopic dermatitis. Ann Allergy Asthma Immunol 2014; 113: 271-275.

DOI: https://doi.org/10.1016/j.anai.2014.06.010

Ottas A, Fishman D, Okas T-L, Kingo K, Soomets U. The metabolic analysis of psoriasis identifies the associated metabolites while providing computational models for the monitoring of the disease. Arch Dermatol Res 2017; 309: 519-528.

DOI: https://doi.org/10.1007/s00403-017-1760-1

Ruzzo EK, Capo-Chichi J-M, Ben-Zeev B, Chitayat D, Mao H, Pappas AL, et al. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron 2013; 80: 429-441.

DOI: https://doi.org/10.1016/j.neuron.2013.08.013

Pant A, Cao S, Yang Z. Asparagine is a critical limiting metabolite for vaccinia virus protein synthesis during glutamine deprivation. J Virol 2019; 93: e01834-18.

DOI: https://doi.org/10.1128/JVI.01834-18

PubChem: Asparagine. National Institutes of Health; Bethesda, Maryland, USA [accessed 2020, Oct 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/6267.

Cui W, Ning Y, Hong W, Wang J, Liu Z, Li MD. Crosstalk between inflammation and glutamate system in depression: signaling pathway and molecular biomarkers for ketamine's antidepressant effect. Mol Neurobiol 2019; 56: 3484-3500.

DOI: https://doi.org/10.1007/s12035-018-1306-3

Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, et al. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry 2016; 21: 1351-1357.

DOI: https://doi.org/10.1038/mp.2015.206

Li J, Che N, Xu L, Zhang Q, Wang Q, Tan W, et al. LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clin Rheumatol 2018; 37: 1493-1502.

DOI: https://doi.org/10.1007/s10067-018-4021-6

Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23: 859-868.

DOI: https://doi.org/10.1038/nm.4358

Doig AJ. Positive feedback loops in Alzheimer's disease: the Alzheimer's feedback hypothesis. J Alzheimers Dis 2018; 66: 25-36.

DOI: https://doi.org/10.3233/JAD-180583

Cruzat V, Rogero MM, Keane KN, Curi R, Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 2018; 10: 1564.

DOI: https://doi.org/10.3390/nu10111564

Newsholme EA, Crabtree B, Ardawi MSM. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 1985; 70: 473-489.

DOI: https://doi.org/10.1113/expphysiol.1985.sp002935

Vogt W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic Biol Med 1995; 18: 93-105.

DOI: https://doi.org/10.1016/0891-5849(94)00158-G

Bin P, Huang R, Zhou X. Oxidation resistance of the sulfur amino acids: methionine and cysteine. BioMed Res Int 2017; 2017: 9584932.

DOI: https://doi.org/10.1155/2017/9584932

Elpelt A, Albrecht S, Teutloff C, Hueging M, Saeidpour S, Lohan SB, et al. Insight into the redox status of inflammatory skin equivalents as determined by EPR spectroscopy. Chem Biol Interact 2019; 310: 108752.

DOI: https://doi.org/10.1016/j.cbi.2019.108752

Niwa Y, Sumi H, Kawahira K, Terashima T, Nakamura T, Akamatsu H. Protein oxidative damage in the stratum corneum: evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Br J Dermatol 2003; 149: 248-254.

DOI: https://doi.org/10.1046/j.1365-2133.2003.05417.x

Pekala J, Patkowska-Sokola B, Bodkowski R, Jamroz D, Nowakowski P, Lochynski S, et al. L-carnitine - metabolic functions and meaning in humans life. Curr Drug Metab 2011; 12: 667-678.

DOI: https://doi.org/10.2174/138920011796504536

Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016; 1863: 2422-2435.

DOI: https://doi.org/10.1016/j.bbamcr.2016.01.023

Pons R, De Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol 1995; 10: S8-S24.

DOI: https://doi.org/10.1177/0883073895010002S03

Berdyshev E, Bronova I, Goleva E, Jung J, Taylor P, Hall CF, et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight 2018; 3: e98006.

DOI: https://doi.org/10.1172/jci.insight.98006

Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63: 50-69.

DOI: https://doi.org/10.1016/j.plipres.2016.04.001

Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol 2002; 119: 166-173.

DOI: https://doi.org/10.1046/j.1523-1747.2002.01833.x

Ishikawa J, Narita H, Kondo N, Hotta M, Takagi Y, Masukawa Y, et al. Changes in the ceramide profile of atopic dermatitis patients. J Invest Dermatol 2010; 130: 2511-2514.

DOI: https://doi.org/10.1038/jid.2010.161

Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, et al. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J Lipid Res 2000; 41: 2071-2082.

DOI: https://doi.org/10.1016/S0022-2275(20)32369-5

Jensen JM, Folster-Holst R, Baranowsky A, Schunck M, Winoto-Morbach S, Neumann C, et al. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 2004; 122: 1423-1431.

DOI: https://doi.org/10.1111/j.0022-202X.2004.22621.x

Wanner R, Peiser M, Wittig B. Keratinocytes rapidly readjust ceramide-sphingomyelin homeostasis and contain a phosphatidylcholine-sphingomyelin transacylase. J Invest Dermatol 2004; 122: 773-782.

DOI: https://doi.org/10.1111/j.0022-202X.2004.22340.x

Peiser M, Zuberbier T, Wanner R. Atopic skin is associated with a lack of phosphatidylcholine-sphingomyelin transacylase activity. J Invest Dermatol 2007; 127: 973-975.

DOI: https://doi.org/10.1038/sj.jid.5700623

Ryborg AK, Deleuran B, Thestrup-Pedersen K, Kragballe K. Lysophosphatidylcholine: a chemoattractant to human T lymphocytes. Arch Dermatol Res 1994; 286: 462-465.

DOI: https://doi.org/10.1007/BF00371572

Published

2021-02-24

How to Cite

Ilves, L., Ottas, A., Kaldvee, B., Abram, K., Soomets, U., Zilmer, M., Jaks, V., & Kingo, K. (2021). Metabolomic Analysis of Skin Biopsies from Patients with Atopic Dermatitis Reveals Hallmarks of Inflammation, Disrupted Barrier Function and Oxidative Stress. Acta Dermato-Venereologica, 101(2), adv00407. https://doi.org/10.2340/00015555-3766