MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Microstructure and Mechanical Properties of Mg–Gd–Y–Zn–Zr Alloy Prepared by Repetitive Upsetting and Extrusion
Zhimin ZhangYue DuGuanshi ZhangZhaoming YanJianmin YuMu Meng
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2018 Volume 59 Issue 4 Pages 669-673

Details
Abstract

The microstructure and room temperature tensile properties of Mg–12Gd–3Y–2Zn–0.5Zr (wt%) alloy processed by repetitive upsetting and extrusion (RUE) at decreasing temperature condition were investigated. The RUE was carried out up to cumulative strains of around 5.4 with decreasing temperature from 753 to 683 K pass-by-pass. With increasing RUE passes, average grain size was gradually decreased from 58 to 7.3 µm and microstructure became more homogeneous. Block-shaped long period stacking ordered (LPSO) phases at grain boundary were broken into small blocks or rods. Lamellar LPSO structures dissolved gradually and β-Mg5(Gd,Y) phase particles precipitated at grain boundaries. Both strength and ductility were improved simultaneously with increasing RUE passes. After 4 RUE passes, the ultimate tensile strength, yield strength and elongation to failure of the alloy reached to 351 MPa, 262 MPa and 10.3%, respectively. The significant improvement of mechanical properties could be ascribed to grain refinement, dispersion of β-Mg5(Gd,Y) phase particles and redistribution of fragmented block-shaped LPSO phases.

Content from these authors
© 2018 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top