Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:43:51.116Z Has data issue: false hasContentIssue false

The abscissa of convergence of the Laplace transform

Published online by Cambridge University Press:  14 July 2016

Peter Hall*
Affiliation:
Australian National University
Jozef L. Teugels*
Affiliation:
Katholieke Universiteit Leuven
Ann Vanmarcke*
Affiliation:
Katholieke Universiteit Leuven
*
Postal address, Department of Statistics, Faculty of Economics and Commerce, Australian National University, GPO Box 4, Canberra ACT 2601, Australia.
∗∗Postal address: Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, 3001 Leuven (Heverlee), Belgium.
∗∗Postal address: Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, 3001 Leuven (Heverlee), Belgium.

Abstract

Assume that we want to estimate – σ, the abscissa of convergence of the Laplace transform. We show that no non-parametric estimator of σ can converge at a faster rate than (log n)–1, where n is the sample size. An optimal convergence rate is achieved by an estimator of the form where xn = O(log n) and is the mean of the sample values overshooting xn. Under further parametric restrictions this (log n)–1 phenomenon is also illustrated by a weak convergence result.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Beirlant, J. and Broniatowski, M. (1991) The mean residual life function and Chernoff-type large deviation. Technical report.Google Scholar
[2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987) Regular Variation. Cambridge University Press.Google Scholar
[3] Csörgő, S. and Mason, D. M. (1985) Central limit theorems for sums of extreme values. Math. Proc. Camb. Phil. Soc. 98, 547558.Google Scholar
[4] Csörgő, S. and Teugels, J. L. (1990) Empirical Laplace transform and approximation of compound distributions. J. Appl. Prob. 27, 88101.Google Scholar
[5] Davison, A. C. and Smith, R. L. (1990) Models for exceedances over high thresholds. J. R. Statist. Soc. B52, 393442.Google Scholar
[6] Gnedenko, B. (1943) Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44, 423453.Google Scholar
[7] Smith, R. L. (1987) Estimating tails of probability distributions. Ann. Statist. 15, 11741207.Google Scholar
[8] Vanmarcke, A. (1992) Doctoral Dissertation, Katholieke Universiteit Leuven.Google Scholar
[9] Widder, D. (1941) The Laplace Transform. Princeton University Press.Google Scholar