DOI QR코드

DOI QR Code

Genetics of Prader-Willi Syndrome

  • Yoon, Ju Young (Department of Pediatrics, Pusan National University Children's Hospital)
  • Received : 2021.09.21
  • Accepted : 2021.10.25
  • Published : 2021.10.31

Abstract

Prader-Willi syndrome (PWS) is a rare genetic disorder which lead to severe neurodevelopmental, endocrine, and metabolic impairment. PWS is genetic disorder related to genomic errors which lead to inactivation of paternally-inherited genes on chromosome 15q11-q13. Epigenetic mechanisms are also involved in PWS, and epigenetic therapies are under investigation. Here we provide review about genetics of PWS, focused on genes involved in pathophysiology of PWS. We will also summarize epigenetics and genetic counseling of PWS.

Keywords

Acknowledgement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

References

  1. Driscoll DJ, Miller JL, Schwartz S, Cassidy SB. Prader-Willi Syndrome. In Adam MP, Ardinger HH, Pagon RA et al. (eds): GeneReviews(®). Seattle (WA): University of Washington, 1993.
  2. Whittington JE, Butler JV, Holland AJ. Changing rates of genetic subtypes of Prader-Willi syndrome in the UK. Eur J Hum Genet 2007;15:127-30. https://doi.org/10.1038/sj.ejhg.5201716
  3. Cassidy SB, Driscoll DJ. Prader-Willi syndrome. Eur J Hum Genet 2009;17:3-13. https://doi.org/10.1038/ejhg.2008.165
  4. Cheon CK. Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome. Ann Pediatr Endocrinol Metab 2016;21:126-35. https://doi.org/10.6065/apem.2016.21.3.126
  5. Miller JL, Lynn CH, Driscoll DC, Goldstone AP, Gold JA, Kimonis V, et al. Nutritional phases in Prader-Willi syndrome. Am J Med Genet A 2011;155A:1040-9.
  6. Butler MG, Sturich J, Myers SE, Gold JA, Kimonis V, Driscoll DJ. Is gestation in Prader-Willi syndrome affected by the genetic subtype? J Assist Reprod Genet 2009;26:461-6. https://doi.org/10.1007/s10815-009-9341-7
  7. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest 2015;38:1249-63. https://doi.org/10.1007/s40618-015-0312-9
  8. Richer LP, Shevell MI, Miller SP. Diagnostic profile of neonatal hypotonia: an 11-year study. Pediatr Neurol 2001;25:32-7. https://doi.org/10.1016/S0887-8994(01)00277-6
  9. Costa RA, Ferreira IR, Cintra HA, Gomes LHF, Guida LDC. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Front Endocrinol (Lausanne) 2019;10:864. https://doi.org/10.3389/fendo.2019.00864
  10. Tauber M, Cutfield W. KIGS highlights: growth hormone treatment in Prader-Willi Syndrome. Horm Res 2007;68 Suppl 5:48-50.
  11. Grugni G, Sartorio A, Crino A. Growth hormone therapy for Prader-willi syndrome: challenges and solutions. Ther Clin Risk Manag 2016;12:873-81. https://doi.org/10.2147/TCRM.S70068
  12. Deal CL, Tony M, Hoybye C, Allen DB, Tauber M, Christiansen JS, et al. GrowthHormone Research Society workshop summary: consensus guidelines for recombinant human growth hormone therapy in Prader-Willi syndrome. J Clin Endocrinol Metab 2013; 98:E1072-87. https://doi.org/10.1210/jc.2012-3888
  13. Dykens EM, Roof E, Hunt-Hawkins H. Cognitive and adaptive advantages of growth hormone treatment in children with Prader-Willi syndrome. J Child Psychol Psychiatry 2017;58:64-74. https://doi.org/10.1111/jcpp.12601
  14. Crino A, Schiaffini R, Ciampalini P, Spera S, Beccaria L, Benzi F, et al. Hypogonadism and pubertal development in Prader-Willi syndrome. Eur J Pediatr 2003;162:327-33. https://doi.org/10.1007/s00431-002-1132-4
  15. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med 2012;14:10-26. https://doi.org/10.1038/gim.0b013e31822bead0
  16. Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 2005; 7:1-20. https://doi.org/10.1017/S1462399405009531
  17. Torrado M, Araoz V, Baialardo E, Abraldes K, Mazza C, Krochik G, et al. Clinical-etiologic correlation in children with Prader-Willi syndrome (PWS): an interdisciplinary study. Am J Med Genet A 2007;143A:460-8. https://doi.org/10.1002/ajmg.a.31520
  18. Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2004;113:565-73. https://doi.org/10.1542/peds.113.3.565
  19. Hartley SL, Maclean WE Jr., Butler MG, Zarcone J, Thompson T. Maladaptive behaviors and risk factors among the genetic subtypes of Prader-Willi syndrome. Am J Med Genet A 2005;136: 140-5.
  20. Christian SL, Robinson WP, Huang B, Mutirangura A, Line MR, Nakao M, et al. Molecular characterization of two proximal deletion breakpoint regions in both Prader-Willi and Angelman syndrome patients. Am J Hum Genet 1995;57:40-8.
  21. Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Goncalves de Castro LC, Abreu AP, et al. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc 2019;3:979-95. https://doi.org/10.1210/js.2019-00041
  22. Mercer RE, Michaelson SD, Chee MJS, Atallah TA, Wevrick R, Colmers WF. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS genetics 2013;9:e1003207. https://doi.org/10.1371/journal.pgen.1003207
  23. Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 2012;13:1079-86. https://doi.org/10.1038/embor.2012.174
  24. Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, et al. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet 1997;17:357-61. https://doi.org/10.1038/ng1197-357
  25. Lee S, Walker CL, Karten B, Kuny SL, Tennese AA, O'Neill MA, et al. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum Mol Genet 2005;14:627-37. https://doi.org/10.1093/hmg/ddi059
  26. Watrin F, Roeckel N, Lacroix L, Mignon C, Mattei MG, Disteche C, et al. The mouse Necdin gene is expressed from the paternal allele only and lies in the 7C region of the mouse chromosome 7, a region of conserved synteny to the human Prader-Willi syndrome region. Eur J Hum Genet 1997;5:324-32. https://doi.org/10.1159/000484784
  27. Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol 2018;60:25. https://doi.org/10.1186/s40781-018-0183-7
  28. Fernandes JCR, Acuna SM, Aoki JI, Floeter-Winter LM, Muxel SM. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019;5.
  29. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009;10:155-9. https://doi.org/10.1038/nrg2521
  30. Buiting K, Nazlican H, Galetzka D, Wawrzik M, Gross S, Horsthemke B. C15orf2 and a novel noncoding transcript from the Prader-Willi/Angelman syndrome region show monoallelic expression in fetal brain. Genomics 2007;89:588-95. https://doi.org/10.1016/j.ygeno.2006.12.008
  31. Wawrzik M, Spiess AN, Herrmann R, Buiting K, Horsthemke B. Expression of SNURF-SNRPN upstream transcripts and epigenetic regulatory genes during human spermatogenesis. Eur J Hum Genet 2009;17:1463-70. https://doi.org/10.1038/ejhg.2009.83
  32. Farber C, Gross S, Neesen J, Buiting K, Horsthemke B. Identification of a testis-specific gene (C15orf2) in the Prader-Willi syndrome region on chromosome 15. Genomics 2000;65:174-83. https://doi.org/10.1006/geno.2000.6158
  33. Gray TA, Saitoh S, Nicholls RD. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A 1999;96:5616-21. https://doi.org/10.1073/pnas.96.10.5616
  34. Glenn CC, Saitoh S, Jong MT, Filbrandt MM, Surti U, Driscoll DJ, et al. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet 1996; 58:335-46.
  35. Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 2000;97:14311-6. https://doi.org/10.1073/pnas.250426397
  36. Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010;18:1196-201. https://doi.org/10.1038/ejhg.2010.102
  37. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008;40:719-21. https://doi.org/10.1038/ng.158
  38. de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009;18:3257-65. https://doi.org/10.1093/hmg/ddp263
  39. Rozhdestvensky TS, Robeck T, Galiveti CR, Raabe CA, Seeger B, Wolters A, et al. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice. Sci Rep 2016;6:20398. https://doi.org/10.1038/srep20398
  40. Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, et al. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 2007;3:e235. https://doi.org/10.1371/journal.pgen.0030235
  41. Qi Y, Purtell L, Fu M, Lee NJ, Aepler J, Zhang L, et al. Snord116 is critical in the regulation of food intake and body weight. Sci Rep 2016;6:18614. https://doi.org/10.1038/srep18614
  42. Burnett LC, LeDuc CA, Sulsona CR, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest 2017; 127:293-305. https://doi.org/10.1172/jci88648
  43. Coulson RL, Yasui DH, Dunaway KW, Laufer BI, Vogel Ciernia A, Zhu Y, et al. Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat Commun 2018;9:1616. https://doi.org/10.1038/s41467-018-03676-0
  44. Wold EA, Wild CT, Cunningham KA, Zhou J. Targeting the 5-HT2C Receptor in Biological Context and the Current State of 5-HT2C Receptor Ligand Development. Curr Top Med Chem 2019;19: 1381-98. https://doi.org/10.2174/1568026619666190709101449
  45. Nonogaki K, Strack AM, Dallman MF, Tecott LH. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 1998;4:1152-6. https://doi.org/10.1038/2647
  46. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995;374:542-6. https://doi.org/10.1038/374542a0
  47. Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 1995;9:395-400. https://doi.org/10.1038/ng0495-395
  48. Smith EY, Futtner CR, Chamberlain SJ, Johnstone KA, Resnick JL. Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus. PLoS Genet 2011;7:e1002422. https://doi.org/10.1371/journal.pgen.1002422
  49. Lewis MW, Vargas-Franco D, Morse DA, Resnick JL. A mouse model of Angelman syndrome imprinting defects. Hum Mol Genet 2019;28:220-9. https://doi.org/10.1093/hmg/ddy345
  50. Beygo J, Grosser C, Kaya S, Mertel C, Buiting K, Horsthemke B. Common genetic variation in the Angelman syndrome imprinting centre affects the imprinting of chromosome 15. Eur J Hum Genet 2020;28:835-9. https://doi.org/10.1038/s41431-020-0595-y
  51. Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 2014;23:4674-85. https://doi.org/10.1093/hmg/ddu187
  52. Wu H, Ng C, Villegas V, Chamberlain S, Cacace A, Wallace O. Small molecule inhibitors of G9a reactivate the maternal PWS genes in Prader-Willi-Syndrome patient derived neural stem cells and differentiated neurons. bioRxiv 2019;640938.
  53. Langouet M, Gorka D, Orniacki C, Dupont-Thibert CM, Chung MS, Glatt-Deeley HR, et al. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in PraderWilli syndrome neurons. Hum Mol Genet 2020;29:3285-95. https://doi.org/10.1093/hmg/ddaa210
  54. Mendiola AJP, LaSalle JM. Epigenetics in Prader-Willi Syndrome. Front Genet 2021;12:624581. https://doi.org/10.3389/fgene.2021.624581
  55. Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW, Cao X, et al. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat Med 2017;23:213-22. https://doi.org/10.1038/nm.4257
  56. Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader-Willi syndrome. Transl Res 2019;208:105-18. https://doi.org/10.1016/j.trsl.2019.02.012
  57. Liehr T, Brude E, Gillessen-Kaesbach G, Konig R, Mrasek K, von Eggeling F, et al. Prader-Willi syndrome with a karyotype 47,XY, +min(15)(pter->q11.1:) and maternal UPD 15--case report plus review of similar cases. Eur J Med Genet 2005;48:175-81. https://doi.org/10.1016/j.ejmg.2005.01.004
  58. Kotzot D. Review and meta-analysis of systematic searches for uniparental disomy (UPD) other than UPD 15. Am J Med Genet 2002;111:366-75. https://doi.org/10.1002/ajmg.10569
  59. Ohta T, Gray TA, Rogan PK, Buiting K, Gabriel JM, Saitoh S, et al. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet 1999;64:397-413. https://doi.org/10.1086/302233