MEMÓRIA ESPACIAL: Quais são suas características e como estudá-la em modelo animal

Autores

DOI:

https://doi.org/10.22289/2446-922X.V10N1A23

Palavras-chave:

Labirinto, Roedores, Memória

Resumo

O termo memória descrito desde a época de Platão, e durante todos esses anos sofreu modificações e aperfeiçoamentos. Hoje o termo é baseado nas informações processadas e armazenadas, dividido principalmente em memórias de curto prazo (STM; short term memory) e memórias de longo prazo (LTM; long term memory). As STM associadas às estruturas cerebrais como o córtex pré-frontal e definidas como memórias de trabalho ou operacionais. Enquanto as LTM, processadas principalmente pelo hipocampo e classificadas como memórias declarativas (ou explícitas) e memórias não-declarativas (ou implícitas). Eventos passados e experiências retidas são exemplos de memórias declarativas. Já habilidades motoras são exemplos de memórias não-declarativas. Como uma maneira de estudar tanto o aprendizado como as memórias armazenadas foram criados inúmeros testes. A maioria dos testes usados fazem uso de labirintos. Dentre os principais utilizados temos aquáticos e não aquáticos. Os labirintos abertos com múltiplas rotas, como o Labirinto de Barnes – LB; Labirinto Aquático de Morris – LAM são exemplos de aquáticos. Possuem como vantagem o fato de não deixar pistas entre um teste e outro, mas trabalham com estímulos aversivos aos animais, podendo gerar algum estresse. Já os não aquáticos temos o Teste de reconhecimento de objetos, o labirinto em “Y” e o labirinto Lashley III. Estes podem dependendo da higienização entre cada teste condicionar interferentes nos dados coletados em sequência. Contudo possuem a vantagem de utilizar situações e características inerentes do animal. Cada um possui suas vantagens e desvantagens na aplicabilidade e obtenção de dados para a pesquisa científica.

Downloads

Não há dados estatísticos.

Referências

Akkerman, S., Prickaerts, J., Steinbusch, H. W. M., & Blokland, A. (2012). Object recognition testing: Statistical considerations. Behavioural Brain Research, 232(2), 317–322. https://doi.org/10.1016/j.bbr.2012.03.024

Alaniz-Gómez, F., Belén Durán-Pérez, F., Quijano-Ortiz, B. L., Salas-Vera, T., Cisneros-Herrera, J., & Guzmán-Díaz, G. (2022). Memória: Revisión conceptual Memory: a conceptual review. Publicación Semestral, 9(17).

Alvarez, P., Zola-Morgan, S., & Squire, L. R. (1995). Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. Journal of Neuroscience, 15(5 II), 3796–3807. https://doi.org/10.1523/jneurosci.15-05-03796.1995

Baddeley, A. (2003). WORKING MEMORY: LOOKING BACK AND LOOKING FORWARD. Nature Reviews, 4(October), 829–839. https://doi.org/10.1038/nrn1201

Baddeley, A. D., & Hitch, G. (1974). Working Memory (G. H. Bower, Ed.; Vol. 8, pp. 47–89). Academic Press. https://doi.org/https://doi.org/10.1016/S0079-7421(08)60452-1

Barnes, C. A. (1979). Memory Deficits Associated with Senescence: A Neurophysiological and Behavioral Study in the Rat. Journal of Comparative and Physiological Psychology, 93(1), 74–104. https://doi.org/https://doi.org/10.1037/h0077579

Biel, W. C. (1940). Early age differences in maze performance in the albino rat. J. Genet. Psychol., 56, 439–453. https://cir.nii.ac.jp/crid/1571980075601143168

Bressler, A., Blizard, D., & Andrews, A. (2010). Low-stress route learning using the lashley iii maze in mice. Journal of Visualized Experiments, 39. https://doi.org/10.3791/1786

Carrillo-Mora, P., Giordano, M., & Santamaría, A. (2009). Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behavioural Brain Research, 203(2), 151–164. https://doi.org/https://doi.org/10.1016/j.bbr.2009.05.022

Carvalho, F. M., Pereira, S. R. C., Pires, R. G. W., Ferraz, V. P., Romano-Silva, M. A., Oliveira-Silva, I. F., & Ribeiro, A. M. (2006). Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test. Pharmacology Biochemistry and Behavior, 83(4), 481–489. https://doi.org/10.1016/j.pbb.2006.03.004

Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210(4466), 207–210. https://doi.org/10.1126/science.7414331

Cruz, J. F. O. da, Gomis-Gonzalez, M., Maldonado, R., Marsicano, G., Ozaita, A., & Busquets-Garcia, A. (2020). An Alternative Maze to Assess Novel Object Recognition in Mice. Bio-Protocol, 10(12). https://doi.org/10.21769/BioProtoc.3651

Crystal, J. D. (2009a). Elements of episodic-like memory in animal models. In Behavioural Processes (Vol. 80, Issue 3, pp. 269–277). https://doi.org/10.1016/j.beproc.2008.09.009

Crystal, J. D. (2009b). Elements of episodic-like memory in animal models. In Behavioural Processes (Vol. 80, Issue 3). https://doi.org/10.1016/j.beproc.2008.09.009

Crystal, J. D. (2010). Episodic-like memory in animals. In Behavioural Brain Research (Vol. 215, Issue 2). https://doi.org/10.1016/j.bbr.2010.03.005

Deacon, R. M. J. (2013). Shallow water (paddling) variants of water maze tests in mice. Journal of Visualized Experiments: JoVE, 76. https://doi.org/10.3791/2608

Deacon, R. M. J., & Rawlins, J. N. P. (2002). Learning impairments of hippocampal-lesioned mice in a paddling pool. Behavioral Neuroscience, 116(3), 472–478. https://doi.org/https://doi.org/10.1037/0735-7044.116.3.472

D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. In Brain Research Reviews (Vol. 36, Issue 1). https://doi.org/10.1016/S0165-0173(01)00067-4

Dudchenko, P. A. (2004). An overview of the tasks used to test working memory in rodents. 28, 699–709. https://doi.org/10.1016/j.neubiorev.2004.09.002

Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology. In H. A. Ruger & C. E. Bussenius (Eds.), Memory: A contribution to experimental psychology. Teachers College Press. https://doi.org/10.1037/10011-000

Ebbinghaus, H. (1964). Memory: A contribution to experimental psychology. In Memory: A contribution to experimental psychology. Dover.

Ebbinghaus, H. (2013). Memory: A Contribution to Experimental Psychology. Annals of Neurosciences, 20(4). https://doi.org/10.5214/ans.0972.7531.200408

Faradila, F., Syafrita, Y., & Lipoeto, N. I. (2020). Relationship between amyloid-beta 42 levels and y-maze alternation values in sprague dawley alzheimer’s induction received medium-chain triglycerides therapy. Open Access Macedonian Journal of Medical Sciences, 8, 476–480. https://doi.org/10.3889/OAMJMS.2020.3243

Farajdokht, F., Vatandoust, S. M., Hosseini, L., Fekri, K., Rahigh Aghsan, S., Majdi, A., Sadigh-Eteghad, S., & Mahmoudi, J. (2021). Sericin protects against acute sleep deprivation-induced memory impairment via enhancement of hippocampal synaptic protein levels and inhibition of oxidative stress and neuroinflammation in mice. Brain Research Bulletin, 174, 203–211. https://doi.org/10.1016/j.brainresbull.2021.06.013

Faria, R. S. de, Moreno, A. R., Leone Pinto, A. I., Moreira Pessoa, E., Peloso Maia, J., Trzesniak, C., & Oliveira Cortez, P. J. (2020). Efeito do estresse crônico na memória espacial de curto e longo prazo em ratos Wistar. REVISTA CIÊNCIAS EM SAÚDE, 10(3). https://doi.org/10.21876/rcshci.v10i3.856

Figueiredo Cerqueira, M. M. de, Castro, M. M. L., Vieira, A. A., Kurosawa, J. A. A., Amaral Junior, F. L. do, Siqueira Mendes, F. de C. C. de, & Sosthenes, M. C. K. (2023). Comparative analysis between Open Field and Elevated Plus Maze tests as a method for evaluating anxiety-like behavior in mice. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14522

Franco, A. H. B. (2021). A imortalidade da alma em Platão. Research, Society and Development, 10(12). https://doi.org/10.33448/rsd-v10i12.20258

Funahashi, S. (2017). Working memory in the prefrontal cortex. Brain Sciences, 7(5). https://doi.org/10.3390/brainsci7050049

Grayson, B., Leger, M., Piercy, C., Adamson, L., Harte, M., & Neill, J. C. (2015). Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behavioural Brain Research, 285, 176–193. https://doi.org/https://doi.org/10.1016/j.bbr.2014.10.025

Guise, K. G., & Shapiro, M. L. (2017). Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding Article Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding. Neuron, 94(1), 183-192.e8. https://doi.org/10.1016/j.neuron.2017.03.011

Hooker, D. (1960). Plans and the structure of behavior. By George A. Miller, Eugene Galanter and Karl H. Pribram 1960. Henry Holt and company, New York. 226 pp. Journal of Comparative Neurology, 115(2), 217. https://doi.org/10.1002/cne.901150208

Hosseini, L., Karimipour, M., Seyedaghamiri, F., Abolhasanpour, N., Sadigh-Eteghad, S., Mahmoudi, J., & Farhoudi, M. (2022). Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice. Journal of Stroke and Cerebrovascular Diseases, 31(12). https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106801

James, W. (1890). The principles of psychology, Vol I. In The principles of psychology, Vol I. Henry Holt and Co. https://doi.org/10.1037/10538-000

Kandel, E. R. (1999). Biology and the future of Psychoanalysis: A New Intellectual Framework for Psychiatry Revisited. Am J. Psychiatry, April, 505–524.

Kandel, E. R. (2000). THE MOLECULAR BIOLOGY OF MEMORY STORAGE:

Kandel, E. R. (2001). The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science, 294(5544), 1030–1038. https://doi.org/10.1126/science.1067020

Kandel, E. R. (2006). IN SEARCH OF The Emergence of a New Science of Mind.

Kessels, R. P. C., De Haan, E. H. F., Kappelle, L. J., & Postma, A. (2001). Varieties of human spatial memory: A meta-analysis on the effects of hippocampal lesions. Brain Research Reviews, 35(3), 295–303. https://doi.org/10.1016/S0165-0173(01)00058-3

Kim, J., Kang, H., Lee, Y. B., Lee, B., & Lee, D. (2023). A quantitative analysis of spontaneous alternation behaviors on a Y-maze reveals adverse effects of acute social isolation on spatial working memory. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41996-4

Kraeuter, A. K., Guest, P. C., & Sarnyai, Z. (2019). The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. In Methods in Molecular Biology (Vol. 1916, pp. 105–111). Humana Press Inc. https://doi.org/10.1007/978-1-4939-8994-2_10

Lashley, K. (1929). Brain mechanisms and intelligence: A quantitative study of injuries to the brain (1st ed.). University of Chicago Press.

Lashley, K. (1933). INTEGRATIVE FUNCTIONS OF THE CEREBRAL CORTEX. www.physiology.org/journal/physrev

Lashley, K. S. (1965). Brain mechanisms and intelligence: A Quantitative study ofinjuries to the Brain. The Medical Journal of Australia, 551–551.

Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P., & Freret, T. (2013). Object recognition test in mice. Nature Protocols, 8(12), 2531–2537. https://doi.org/10.1038/nprot.2013.155

Leger, M., Quiedeville, A., Paizanis, E., Natkunarajah, S., Freret, T., Boulouard, M., & Schumann-Bard, P. (2012). Environmental Enrichment Enhances Episodic-Like Memory in Association with a Modified Neuronal Activation Profile in Adult Mice. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048043

Lian, X., Zhang, X., Chen, W., Xue, F., & Wang, G. (2024). Dexmedetomidine mitigates neuroinflammation in an Alzheimer’s disease mouse model via the miR-204-3p/FBXL7 signaling axis. Brain Research, 1822. https://doi.org/10.1016/j.brainres.2023.148612

Liguz-Lecznar, M., Lehner, M., Kaliszewska, A., Zakrzewska, R., Sobolewska, A., & Kossut, M. (2015). Altered glutamate/GABA equilibrium in aged mice cortex influences cortical plasticity. Brain Structure and Function, 220(3), 1681–1693. https://doi.org/10.1007/s00429-014-0752-6

Lombroso, P. (2004). Aprendizado e memória Learning and memory. 26(3), 207–210.

Lopes, E. P. (2008). O cuidado com a alma imortal nos diálogos Fédon, Fedro e República, de Platão.

Lueptow, L. M. (2017). Novel object recognition test for the investigation of learning and memory in mice. Journal of Visualized Experiments, 2017(126). https://doi.org/10.3791/55718

Mahmoudi, J., Hosseini, L., Sadigh-Eteghad, S., Farajdokht, F., Vatandoust, S. M., & Ziaee, M. (2021). Sericin Alleviates Thermal Stress Induced Anxiety-Like Behavior and Cognitive Impairment Through Regulation of Oxidative Stress, Apoptosis, and Heat-Shock Protein-70 in the Hippocampus. Neurochemical Research, 46(9), 2307–2316. https://doi.org/10.1007/s11064-021-03370-6

Mathiasen, J. R., & DiCamillo, A. (2010). Novel Object Recognition in the Rat: A Facile Assay for Cognitive Function. Current Protocols in Pharmacology, 49(1), 5.59.1-5.59.15. https://doi.org/https://doi.org/10.1002/0471141755.ph0559s49

Morris, G. M. (1981). Spatial Localization Does Not Require Local Cues the Presence of. Learning and Motivation, 12, 239–260. https://doi.org/http://dx.doi.org/10.1016/0023-9690(81)90020-5

Moscovitch, M., & Winocur, G. (2014). The Frontal Cortex and Working with Memory the Frontal Cortex and Working with Memory. August 2002. https://doi.org/10.1093/acprof

Nadel, L., & Maurer, A. P. (2020). Recalling Lashley and reconsolidating Hebb. In Hippocampus (Vol. 30, Issue 8, pp. 776–793). John Wiley and Sons Inc. https://doi.org/10.1002/hipo.23027

Oliveira-Silva, I. F., Pinto, L., Pereira, S. R. C., Ferraz, V. P., Barbosa, A. J. A., Coelho, V. A. A., Gualberto, F. F. A. S., Souza, V. F., Faleiro, R. R. M., Franco, G. C., & Ribeiro, A. M. (2007). Age-related deficit in behavioural extinction is counteracted by long-term ethanol consumption: Correlation between 5-HIAA/5HT ratio in dorsal raphe nucleus and cognitive parameters. Behavioural Brain Research, 180(2), 226–234. https://doi.org/https://doi.org/10.1016/j.bbr.2007.03.012

Olton, D. S. (1987). The Radial Arm Maze as a Tool in Behavioral Pharmacology. Physiology & Behavior, 40, 793–797.

Olton, D. S., Becker, J. T., & Handelmann, G. E. (1979). Hippocampus, space, and memory. Behavioral and Brain Sciences, 2(3), 313–322. https://doi.org/10.1017/S0140525X00062713

Olton, D. S., & Samuelson, R. J. (1976). Remembrance of Places Passed: Spatial Memory in Rats. Journal of Experimental Psychology: Animal Behavior Processes, 2(2).

Paul, C., Magda, G., & Abel, S. (2009). Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behavioral and Brain Sciences, 203(3877), 151–164. https://doi.org/10.1016/j.bbr.2009.05.022

Qin, T. Z., Wang, X., Du, J. Z., Lin, J. J., Xue, Y. Z., Guo, L., Lai, P. P., Jing, Y. T., Zhang, Z. W., & Ding, G. R. (2022). Effects of radiofrequency field from 5G communications on the spatial memory and emotionality in mice. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2022.2149708

Quadros, E. (2016). A questão da memória em Aristóteles e Agostinho: uma leitura a partir de Paul Ricoeur. Scintilla, 13(2), 47–62.

Ross, T. W., & Easton, A. (2022). Rats use strategies to make object choices in spontaneous object recognition tasks. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-21537-1

Rudy, J. W., Stadler-Morris, S., & Albert, P. (1987). Ontogeny of Spatial Navigation Behaviors in the Rat: Dissociation of “Proximal”-and “Distal”-Cue-Based Behaviors. In Behavioral Neuroscicnce (Issue 1). https://doi.org/https://doi.org/10.1037/0735-7044.101.1.62

Sáiz, D. (2008). La historia de la psicología como herramienta de uso para la reconstrucción de un campo de investigación . Un ejemplo en psicología de la memória Milagros Sáiz. Revista de Historia de La Psicología, 29(1).

Salehpour, F., Farajdokht, F., Mahmoudi, J., Erfani, M., Farhoudi, M., Karimi, P., Rasta, S. H., Sadigh-Eteghad, S., Hamblin, M. R., & Gjedde, A. (2019). Photobiomodulation and coenzyme Q10 treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Frontiers in Cellular Neuroscience, 13, 1–17. https://doi.org/10.3389/fncel.2019.00074

Samson, R. D., & Barnes, C. A. (2013). Impact of aging brain circuits on cognition. European Journal of Neuroscience, 37(February), 1903–1915. https://doi.org/10.1111/ejn.12183

Sankowski, R., Huerta, T. S., Kalra, R., Klein, T. J., Strohl, J. J., Al-Abed, Y., Robbiati, S., & Huerta, P. T. (2019). Large-scale validation of the paddling pool task in the clockmaze for studying hippocampus-based spatial cognition in mice. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00121

Sarter, M., Bodewitz, G., & Stephens, D. N. (1988). Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist fl-carbolines. In Psychopharmacology (Vol. 94).

Schmitt, W. B., Deacon, R. M. J., Reisel, D., Sprengel, R., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2004). Spatial reference memory in GluR-A-deficient mice using a novel hippocampal-dependent paddling pool escape task. Hippocampus, 14(2), 216–223. https://doi.org/https://doi.org/10.1002/hipo.10168

Scoville, W. B., & Milner, B. (1957). LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11–21. https://doi.org/10.1136/jnnp.20.1.11

Sena, I. C. (2019). Efeitos da deficiência de tiamina e do processo de aprendizagem espacial sobre parâmetros neuroquímicos e imunológicos do hipocampo e tálamo de camundongos Swiss. https://doi.org/10.1017/CBO9781107415324.004

Seyedaghamiri, F., Farajdokht, F., Vatandoust, S. M., Mahmoudi, J., Khabbaz, A., & Sadigh-Eteghad, S. (2021). Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Molecular Biology Reports, 48(2), 1371–1382. https://doi.org/10.1007/s11033-021-06195-2

Shimoda, S., Ozawa, T., Ichitani, Y., & Yamada, K. (2021). Long-term associative memory in rats: Effects of familiarization period in object-place-context recognition test. PLoS ONE, 16(7 July). https://doi.org/10.1371/journal.pone.0254570

Silva, W. M. B. da, Santos, J. M. dos, Costa, L. de P., Holanda, L. S. de, Andrade Neto, J. B., Batista, A. P., Morais, S. M. de, & Souza, C. de M. (2022). Potencial da planta Psidium guajava L. contra a doença de Alzheimer pela reversão do déficit de memória induzido por escopolamina. Research, Society and Development, 11(14), e234111436167. https://doi.org/10.33448/rsd-v11i14.36167

Smith, E. E., & Grossman, M. (2008). Multiple systems of category learning. In Neuroscience and Biobehavioral Reviews (Vol. 32, Issue 2, pp. 249–264). https://doi.org/10.1016/j.neubiorev.2007.07.009

Smolka, A. L. B. (2000). A memória em questão: uma perspectiva histórico-cultural. Educação & Sociedade, 21(71), 166–193. https://doi.org/10.1590/s0101-73302000000200008

Sprung, L., & Sprung, H. (1969). Hermann Ebbinghaus y su obra. Revista de Psicología, 4(2). https://doi.org/10.18800/psico.198602.001

Squire, L. R. (1986). Mechanisms of memory. Science, 232(4758), 1612–1619. https://doi.org/10.1126/science.3086978

Squire, L. R., & Knowlton, B. J. (1995). Memory, hippocampus, and brain systems. In The cognitive neurosciences. (pp. 825–837). The MIT Press.

Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44(1). https://doi.org/10.1146/annurev.ps.44.020193.002321

Squire, L. R., & Zola, S. M. (1998). Episodic Memory, Semantic Memory , and Amnesia. Hi, 211(March), 205–211.

Sunyer, B., Patil, S., Hoger, H., & Lubec, G. (2007). Barnes maze, a useful task to assess spatial reference memory in the mice. Nat Protoc.

Sven, A., Prickaerts, J., Steinbusch, H. W. M., & Blokland, A. (2012). Object recognition testing: Statistical considerations. Behavioural Brain Research, 232(2), 317–322. https://doi.org/https://doi.org/10.1016/j.bbr.2012.03.024

Teixeira, L. C. M. (2013). Exercício físico , neurogênese e memória Exercise , neurogenesis and memory.

Terry, A. V. (2009). Chapter 13 - Spatial navigation (water maze) tasks. In Methods of behavior analysis in neuroscience (Issue 6, pp. 1–10).

Tolman, E. C. (1948). Maps in your mind. Psychological Review, 55.

Tropea, M. R., Sanfilippo, G., Giannino, F., Davì, V., Gulisano, W., & Puzzo, D. (2022). Innate Preferences Affect Results of Object Recognition Task in Wild Type and Alzheimer’s Disease Mouse Models. Journal of Alzheimer’s Disease, 85(3). https://doi.org/10.3233/JAD-215209

Tulving, E. (1972). 1972 - Tulving - Episodic and semantic memory.pdf. In Organization of Memory.

Tulving, E. (1984). How many memory systems are there? APA Awaard Addresses, 14.

Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301–306. https://doi.org/10.1126/science.2296719

Vieira, T. H. F. e. (2014). Envolvimento do sistema endocanabinóide no efeito promnésico induzido pelo exercício físico.

Vigil, F. A. B., Oliveira-Silva, I. de F., Ferreira, L. F., Pereira, S. R. C., & Ribeiro, A. M. (2010). Spatial memory deficits and thalamic serotonergic metabolite change in thiamine deficient rats. Behavioural Brain Research, 210(1), 140–142. https://doi.org/10.1016/j.bbr.2010.02.019

Vilar, A., & Nils, M. (2015). Treinamento em memória operacional espacial em ratos idosos: efeitos na ansiedade, habituação e densidade de células no hipocampo.

Villas-Boas, C. A. (2014). Avaliação comportamental e eletrofisiológica da atividade do córtex pré-frontal em processos de tomada de decisões em ratos rats. 161.

Vincent, S. B. (1915). The white rat and the maze problem: The introduction of visual control. Journal of Animal Behavior, 5(1), 1–24. https://doi.org/10.1037/h0072410

Vorhees CV. (1983). Influence of early testing on postweaning performance in untreated F344 rats, with comparisons to Sprague-Dawley rats, using a standardized battery of tests for behavioral teratogenesis. Neurobehav Toxicol Teratol., 5(5), 587–591.

Vorhees, C. V, & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of Learning and Memory. Nat Protocols, 1(2), 848–858. https://doi.org/10.1038/nprot.2006.116.Morris

Weisz, V. I., Rios, M. B., & Argibay, P. F. (2012). Episodic-like memory: New perspectives from a behavioral test in rats. In Journal of Integrative Neuroscience (Vol. 11, Issue 1). https://doi.org/10.1142/S021963521250001X

Whishaw, I. Q. (1995). A comparison of rats and mice in a swimming pool place task and matching to place task: Some surprising differences. Physiology & Behavior, 58(4), 687–693. https://doi.org/https://doi.org/10.1016/0031-9384(95)00110-5

Wongwitdecha, N., & Marsden, C. A. (1996). Effects of social isolation rearing on learning in the Morris water maze. Brain Research, 715(1–2), 119–124. https://doi.org/10.1016/0006-8993(95)01578-7

Xia, M., Liu, T., Bai, W., Zheng, X., & Tian, X. (2019). Information transmission in HPC-PFC network for spatial working memory in rat. Behavioural Brain Research, 356, 170–178. https://doi.org/https://doi.org/10.1016/j.bbr.2018.08.024

Downloads

Publicado

18-04-2024

Como Citar

Rodrigues Silva, A. C., Gomes, E. C. C., Sena Romano, I. C., Santos Silva, V. G. dos, Oliveira, A. A. de, Costa, I. dos S., … Lacerda, R. de F. (2024). MEMÓRIA ESPACIAL: Quais são suas características e como estudá-la em modelo animal. Psicologia E Saúde Em Debate, 10(1), 359–383. https://doi.org/10.22289/2446-922X.V10N1A23

Edição

Seção

Estudo Teórico