We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Biological functions of long noncoding RNAs and circular RNAs in small-cell lung cancer

    Sachin Kumar

    *Author for correspondence:

    E-mail Address: sksingla@gmail.com

    Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India

    ,
    Monu Pandey

    Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India

    &
    Surender K Sharawat

    Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India

    Published Online:https://doi.org/10.2217/epi-2020-0214

    We aim to discuss comprehensively the role of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in small-cell lung cancer (SCLC) biology and their clinical utility as cancer biomarkers. We searched the scientific literature to select articles related to the role of lncRNAs and circRNAs in SCLC biology or as cancer biomarkers. We identified that a number of lncRNAs and circRNAs can regulate key biological processes involved in SCLC development, including cell proliferation, metastasis and chemoresistance mainly acting as miRNA sponges. Also, the expression of a few lncRNAs and circRNAs predicted survival outcome depicting their utility as prognostic biomarkers. Further investigations on the role of lncRNAs and circRNAs in SCLC tumors may yield novel therapeutic targets for SCLC.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Rudin CM, Poirier JT. Small-cell lung cancer in 2016: shining light on novel targets and therapies. Nat. Rev. Clin. Oncol. 14(2), 75–76 (2017). • Reviews the progress of research on novel therapeutic targets and emerging therapies in small-cell lung cancer (SCLC).
    • 2. Sen T, Gay CM, Byers LA. Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. Transl. Lung Cancer Res. 7(1), 50–68 (2018).
    • 3. Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat. Rev. Cancer 17(12), 725–737 (2017). •• Reviews genetic and epigenetic changes and mechanism of drug resistance in SCLC.
    • 4. Van Meerbeeck JP, Fennell DA, De Ruysscher DKM. Small-cell lung cancer. Lancet 378(9804), 1741–1755 (2011).
    • 5. Peifer M, Fernández-Cuesta L, Sos ML et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44(10), 1104–1110 (2012).
    • 6. George J, Lim JS, Jang SJ et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563), 47–53 (2015).
    • 7. Wagner AH, Devarakonda S, Skidmore ZL et al. Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nat. Commun. 9(1), 3787 (2018).
    • 8. Rudin CM, Durinck S, Stawiski EW et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44(10), 1111–1116 (2012).
    • 9. Yokomizo A, Tindall DJ, Drabkin H et al. PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene 17(4), 475–479 (1998).
    • 10. Rudin CM, Poirier JT, Byers LA et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19(5), 289–297 (2019). •• Proposes a working nomenclature for SCLC subtypes defined by differential expression of four transcription regulators.
    • 11. Chang HY. Genome regulation by long non-coding RNAs. Blood 122(21), SCI-29 (2013).
    • 12. Morris KV, Mattick JS. The rise of regulatory RNA. Nat. Rev. Genet. 15(6), 423–437 (2014).
    • 13. Derrien T, Johnson R, Bussotti G et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22(9), 1775–1789 (2012).
    • 14. Cabili M, Trapnell C, Goff L et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25(18), 1915–1927 (2011). • Presents an integrative approach to define a reference catalog of >8000 human large intergenic noncoding RNAs.
    • 15. Wu T, Du Y. LncRNAs: from basic research to medical application. Int. J. Biol. Sci. 13(3), 295–307 (2017).
    • 16. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 29(4), 452–463 (2016). •• Comprehensively reviews the role of long noncoding RNAs as drivers of cancer phenotypes.
    • 17. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7(2), e30733 (2012).
    • 18. Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4(JUNE), 1–18 (2015).
    • 19. Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 15(6), 9331–9342 (2014).
    • 20. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief. Bioinform. 18(4), 547–557 (2017).
    • 21. Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development 143(11), 1838–1847 (2016).
    • 22. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17(4), 205–211 (2016).
    • 23. Zhong Y, Du Y, Yang X et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol. Cancer 17(1), 1–11 (2018).
    • 24. Vo JN, Cieslik M, Zhang Y et al. The landscape of circular RNA in cancer. Cell 176(4), 869–881.e13 (2019). •• Reports comprehensive characterization of circular RNAs (circRNAs) in >2000 cancer samples.
    • 25. Qian L, Yu S, Chen Z, Meng Z, Huang S, Wang P. The emerging role of CircRNAs and their clinical significance in human cancers. Biochim Biophys Acta Rev Cancer 1870(2), 247–260 (2018).
    • 26. Lei B, Tian Z, Fan W, Ni B. Circular RNA: a novel biomarker and therapeutic target for human cancers. Int. J. Med. Sci. 16(2), 292–301 (2019).
    • 27. Zhang C, Ma L, Niu Y et al. Circular RNA in lung cancer research: biogenesis, functions, and roles. Int. J. Biol. Sci. 16(5), 803–814 (2020).
    • 28. Tsai M-C, Manor O, Wan Y et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992), 689–693 (2010).
    • 29. Ono H, Motoi N, Nagano H et al. Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer. Cancer Med. 3(3), 632–642 (2014).
    • 30. Sun Y, Zhou Y, Bai Y et al. A long non-coding RNA HOTTIP expression is associated with disease progression and predicts outcome in small cell lung cancer patients. Mol. Cancer 16(1), 1–15 (2017).
    • 31. Wang KC, Yang YW, Liu B et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341), 120–126 (2011).
    • 32. Sun Y, Hu B, Wang Q et al. Long non-coding RNA HOTTIP promotes BCL-2 expression and induces chemoresistance in small cell lung cancer by sponging miR-216a. Cell Death Dis. 9(2), 85 (2018).
    • 33. Wang D, Wu W, Huang W, Wang J, Luo L, Tang D. LncRNA LUADT1 sponges miR-15a-3p to upregulate Twist1 in small cell lung cancer. BMC Pulm. Med. 19(1), 1–6 (2019).
    • 34. Huang C, Liu S, Wang H, Zhang Z, Yang Q, Gao F. LncRNA PVT1 overexpression is a poor prognostic biomarker and regulates migration and invasion in small cell lung cancer. Am. J. Transl. Res. 8(11), 5025–5034 (2016).
    • 35. Zeng F, Wang Q, Wang S et al. Linc00173 promotes chemoresistance and progression of small cell lung cancer by sponging miR-218 to regulate Etk expression. Oncogene 39(2), 293–307 (2020).
    • 36. Chen S, Wu H, Lv N et al. LncRNA CCAT2 predicts poor prognosis and regulates growth and metastasis in small cell lung cancer. Biomed. Pharmacother. 82, 583–588 (2016).
    • 37. Chen W, Hang Y, Xu W et al. BLACAT1 predicts poor prognosis and serves as oncogenic lncRNA in small-cell lung cancer. J. Cell. Biochem. 120(2), 2540–2546 (2019).
    • 38. Wu L, Wang P. Long non-coding rna-neighboring enhancer of foxa2 inhibits the migration and invasion of small cell lung carcinoma cells by downregulating transforming growth factor-β1. Oncol. Lett. 17(6), 4969–4975 (2019).
    • 39. Fu Y, Zhang P, Nan H et al. LncRNA CASC11 promotes TGF-β1, increases cancer cell stemness and predicts postoperative survival in small cell lung cancer. Gene 704(November 2018), 91–96 (2019).
    • 40. Niu Y, Ma F, Huang W et al. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2. Mol. Cancer 16(1), 1–13 (2017).
    • 41. Zhang Y, Li Y, Han L, Zhang P, Sun S. SBF2-AS1: an oncogenic lncRNA in small-cell lung cancer. J. Cell. Biochem. 120(9), 15422–15428 (2019).
    • 42. Yan Z, Yang Q, Xue M, Wang S, Hong W, Gao X. YY1-induced lncRNA ZFPM2-AS1 facilitates cell proliferation and invasion in small cell lung cancer via upregulating of TRAF4. Cancer Cell Int. 20(1), 1–11 (2020).
    • 43. Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumor Biol. 37(1), 185–197 (2016).
    • 44. Chang Z, Cui J, Song Y. Long noncoding RNA PVT1 promotes EMT via mediating microRNA-186 targeting of Twist1 in prostate cancer. Gene 654(February), 36–42 (2018).
    • 45. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 36(11), 1461–1473 (2017).
    • 46. Ling H, Spizzo R, Atlasi Y et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 23(9), 1446–1461 (2013).
    • 47. Wang CH, Li YH, Tian HL, Bao XX, Wang ZM. Long non-coding RNA BLACAT1 promotes cell proliferation, migration and invasion in cervical cancer through activation of Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 22(10), 3002–3009 (2018).
    • 48. Padua D, Massagué J. Roles of TGFβ in metastasis. Cell Res. 19(1), 89–102 (2009).
    • 49. Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595), 1039–1043 (2002).
    • 50. Yu H, Zheng J, Liu X et al. Transcription factor NFAT5 promotes glioblastoma cell-driven angiogenesis via SBF2-as1/mIR-338-3p-mediated EGFl7 expression change. Front. Mol. Neurosci. 10(September), 1–15 (2017).
    • 51. Fang S, Gao H, Tong Y et al. Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab. Investig. 96(1), 60–68 (2016).
    • 52. Fang S, Shen Y, Chen B et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR. Ann. Transl. Med. 6(22), 440–440 (2018).
    • 53. Chen R, Chen B, Li D et al. HOTAIR contributes to chemoresistance by activating NF-κB signaling in small-cell lung cancer. Int. J. Clin. Exp. Pathol. 12(8), 2997–3004 (2019).
    • 54. Kuang P, Chen P, Wang L et al. RNA sequencing analysis of small cell lung cancer reveals candidate chemotherapy insensitivity long noncoding RNAs and microRNAs. Ann. Transl. Med. 8(4), 121–121 (2020).
    • 55. Wang S, Yu J. Long non-coding RNA transcribed from pseudogene PPIAP43 is associated with radiation sensitivity of small cell lung cancer cells. Oncol. Lett. 18(5), 4583–4592 (2019).
    • 56. Li L, Song W, Yan X et al. Friend leukemia virus integration 1 promotes tumorigenesis of small cell lung cancer cells by activating the miR-17-92 pathway. Oncotarget 8(26), 41975–41987 (2017).
    • 57. Li L, Li W, Chen N et al. FLI1 exonic circular RNAs as a novel oncogenic driver to promote tumor metastasis in small cell lung cancer. Clin. Cancer Res. 25(4), 1302–1317 (2019). •• The first study which explores the expression of circRNA in the plasma exosomes of SCLC patients.
    • 58. Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit. Rev. Biochem. Mol. Biol. 48(4), 301–316 (2013).
    • 59. Huang W, Yang Y, Wu J et al. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ. 27(5), 1709–1727 (2020).
    • 60. Zhang C, Zhang B, Yuan B et al. RNA-Seq profiling of circular RNAs in human small cell lung cancer. Epigenomics 12(8), 685–700 (2020). •• The first study of comprehensive profiling of circRNAs in SCLC tissues by RNA-sequencing.
    • 61. Rolfo C, Mack PC, Scagliotti GV et al. Liquid Biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J. Thorac. Oncol. 13(9), 1248–1268 (2018).
    • 62. Revelo AE, Martin A, Velasquez R et al. Liquid biopsy for lung cancers: an update on recent developments. Ann. Transl. Med. 7(15), 349 (2019).