ADVANCES IN BIOREMEDIATION AGENTS AND PROCESSES FOR REMOVAL OF PERSISTENT CONTAMINANTS FROM ENVIRONMENT

Authors

  • ROSHNI PATIL Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Sayli, Silvassa, Union Territory of Dadra Nagar Haveli and Daman Diu-396230, India https://orcid.org/0009-0002-9898-0782
  • SONAL DESAI Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Sayli, Silvassa, Union Territory of Dadra Nagar Haveli and Daman Diu-396230, India https://orcid.org/0000-0002-8495-8341

DOI:

https://doi.org/10.22159/ijpps.2024v16i5.50724

Keywords:

Bioremediation, PAH (Polycyclic Aromatic Hydrocarbons), Bioaugmentation, Biostimulation, Phytoremediation

Abstract

The development of bioremediation agents and processes-a sustainable solution to environmental pollution has advanced significantly. This is particularly valid when handling persistent pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs). This study reviews the state-of-the-art in bioremediation technology, emphasizing the vital role that bacteria and their metabolic pathways play in the breakdown of pollutants. Microorganisms, which can be any type of fungus or bacteria, have been employed because of their unique capacity to break down a broad spectrum of contaminants. A thorough grasp of the metabolic subtleties of these bacteria is essential for optimizing bioremediation methods, especially with regard to PAH breakdown. The exploration of eco-friendly technologies, such bioaugmentation and biostimulation, emphasizes the commitment to eco-friendly approaches to environmental remediation. This review presents strong case studies and acknowledges ongoing issues to demonstrate the practical effectiveness of bioremediation. Future advancements in bioremediation-a crucial aspect of environmental management-may be possible through the combination of genetic engineering and artificial intelligence, which could assist overcome current obstacles.

Downloads

Download data is not yet available.

References

Alaira SA, Padilla CS, Alcantara EL, Aggangan NS. Social acceptability of the bioremediation technology for the rehabilitation of an abandoned mined-out area in mogpog, marinduque, philippines. J Environ Sci Manag. 2021;24(1):77-91. doi: 10.47125/jesam/2021_1/08.

Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020 Sep 1;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691, PMID 32964150.

Saravanan A, Kumar PS, Duc PA, Rangasamy G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: a sustainable approach. Chemosphere. 2023 Feb 1;313:137323. doi: 10.1016/j.chemosphere.2022.137323, PMID 36410512.

Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS. Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics. 2022 Aug 1;10(8). doi: 10.3390/toxics10080484, PMID 36006163.

Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res Int. 2021 May 1;28(20):24917-39. doi: 10.1007/s11356-021-13252-7, PMID 33768457.

Verma JP, Jaiswal DK. Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol. 1555;6:2015. doi: 10.3389/fmicb.2015.01555.

Dixit R, Wasiullah MD, Malaviya D, Pandiyan K, Singh U, Sahu A. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 2015;7(2):2189-212. doi: 10.3390/su7022189.

Stroo, Hans and Leeson, Andrea and ward C. Bioaugmentation Groundwater Rem. 2013. doi: 10.1007/978-1-4614-4115-1.

Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017 Dec 4;14(12). doi: 10.3390/ijerph14121504, PMID 29207531.

Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R. Recent advances in bioremediation of heavy metals and persistent organic pollutants: a review. Sci Total Environ. 2022 Dec 1;850:157961. doi: 10.1016/j.scitotenv.2022.157961, PMID 35963399.

Gaur N, Narasimhulu K, YP. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod. 2018;198:1602-31. doi: 10.1016/j.jclepro.2018.07.076.

Sharma I, Sharma I. Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. Trace Met Environ-New Approaches Recent Adv. 2020 Dec 7. doi: 10.5772/intechopen.90453.

De Jesus R, Alkendi R. A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution. Front Microbiol. 2022 Mar 2;13:1066133. doi: 10.3389/fmicb.2022.1066133, PMID 36938133.

Karigar CS, Rao SS. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. 2011;2011:805187. doi: 10.4061/2011/805187. PMID 21912739.

DT, Adamu Karfi I, RV, Tg N. An alternative approach on bioremediation of heavy metals in tannery effluents waste using streptomyces sp. Asian J Pharm Clin Res. 2017;10(10). doi: 10.22159/ajpcr.2017.v10i10.19480.

Vaksmaa A, Guerrero Cruz S, Ghosh P, Zeghal E, Hernando Morales V, Niemann H. Role of fungi in bioremediation of emerging pollutants. Front Mar Sci. 2023 Mar 6;10. doi: 10.3389/fmars.2023.1070905.

Mousavi SM, Hashemi SA, Iman Moezzi SM, Ravan N, Gholami A, Lai CW. Recent advances in enzymes for the bioremediation of pollutants. Biochem Res Int. 2021 Jun;2021:5599204. doi: 10.1155/2021/5599204, PMID 34401207.

Ankit BK, Bauddh KJ, Korstad J. Phycoremediation: use of algae to sequester heavy metals. Hydrobiology. 2022 Jul 1;1(3):288-303. doi: 410.3390/hydrobiology1030021.

Kharel HL, Shrestha I, Tan M, Nikookar M, Saraei N, Selvaratnam T. Cyanidiales-based bioremediation of heavy metals. BioTech (Basel). 2023;12(2). doi: 10.3390/biotech12020029, PMID 37092473.

Touliabah HES, El-Sheekh MM, Ismail MM, El-Kassas H. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules. 2022 Feb 1;27(3). doi: 10.3390/molecules27031141, PMID 35164405.

Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A. Genetically engineered microorganisms for environmental remediation. Chemosphere Chemosphere. 2023;310:136751. doi: 10.1016/j.chemosphere.2022.136751, PMID 36209847.

Joutey NT, Bahafid W, Sayel H, El Ghachtouli N, Joutey NT, Bahafid W. Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-Life of Science. 2013 Jun 14. doi: 10.5772/56194.

Li X, Wu S, Dong Y, Fan H, Bai Z, Zhuang X. Engineering microbial consortia towards bioremediation. Water. 2021 Oct 19;13(20):2928. doi: 10.3390/w13202928.

Zhang T, Zhang H. Microbial consortia are needed to degrade soil pollutants. Microorganisms. 2022 Feb 1;10(2). doi: 10.3390/microorganisms10020261, PMID 35208716.

Ayilara MS, Babalola OO. Bioremediation of environmental wastes: the role of microorganisms. Front Agron. 2023 May 30;5. doi: 10.3389/fagro.2023.1183691.

Wang C, Sun H, Li J, Li Y, Zhang Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus phanerochaete chrysosporium in soils. Chemosphere. 2009;77(6):733-8. doi: 10.1016/j.chemosphere.2009.08.028, PMID 19751947.

Dhar K, Subashchandrabose SR, Venkateswarlu K, Krishnan K, Megharaj M. Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: a comprehensive review. Rev Environ Contam Toxicol. 2020;251:25-108. doi: 10.1007/398_2019_29.

Guirado M, Garcia Delgado C, Pindado O, de la Torre BO, Escolano O, Eymar E. Bioremediation study of a hydrocarbon-contaminated soil by profiling aromatic and aliphatic chains. Appl Soil Ecol. 2023 Oct 1;190. doi: 10.1016/j.apsoil.2023.104983.

Chen ZN, A D, Chao Y Qing, Li HY, Li C, Lin Q qi. Mechanism of polycyclic aromatic hydrocarbons degradation in the rhizosphere of phragmites australis: organic acid co-metabolism, iron-driven, and microbial response. Environmental Pollution. 2023 Jun;325:121608. doi: 10.1016/j. envpol.2023.121608.

Chauhan A, Fazlurrahman OJG, Oakeshott JG, Jain RK. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol. 2008 Mar;48(1):95-113. doi: 10.1007/s12088-008-0010-9, PMID 23100704.

Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A. Genetically engineered microorganisms for environmental remediation. Chemosphere Chemosphere. 2023;310:136751. doi: 10.1016/j.chemosphere.2022.136751, PMID 36209847.

French KE, Zhou Z, Terry N. Horizontal ’gene drives’ harness indigenous bacteria for bioremediation. Sci Rep. 2020 Sep 15;10(1):15091. doi: 10.1038/s41598-020-72138-9, PMID 32934307.

Tribedi P, Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P. Bioaugmentation and biostimulation: a potential strategy for environmental remediation. JMEN. 2018 Nov 28;6(5). doi: 10.15406/jmen.2018.06.00219.

Tyagi M, da Fonseca MMR, de Carvalho CCCR. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 2011 Apr 3;22(2):231-41. doi: 10.1007/s10532-010-9394-4, PMID 20680666.

Baskaran S. Sathiavelu M. Bioaugmentation and biostimulation of dumpsites for plastic degradation. Cost Effect Technol Solid Waste Wastewater Treat. 2022 Jan 1:9-23. doi: 10.1016/B978-0-12-822933-0.00015-2.

Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020 Apr 30;11:359. doi: 10.3389/fpls.2020.00359, PMID 32425957.

Hadibarata T, Voijant Tangahu B. Green engineering principles and application: bioremediation. Environ Toxicol Manage. 2021;1(3):1-8. doi: 10.33086/etm.v1i3.2504.

Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016 Sep 16;32(11):180. doi: 10.1007/s11274-016-2137-x, PMID 27638318.

Paliwal V, Puranik S, Purohit HJ. Integrated perspective for effective bioremediation. Appl Biochem Biotechnol. 2012 Feb;166(4):903-24. doi: 10.1007/s12010-011-9479-5, PMID 22198863.

Harvey S, Elashvili I, Valdes JJ, Kamely D, Chakrabarty AM. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology (N Y). 1990 Mar 8;8(3):228-30. doi: 10.1038/nbt0390-228, PMID 1367420.

Atlas RM, Hazen TC. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol. 2011 Aug 8;45(16):6709-15. doi: 10.1021/es2013227, PMID 21699212.

Kimes NE, Callaghan AV, Suflita JM, Morris PJ. Microbial transformation of the deepwater horizon oil spill-past, present, and future perspectives. Front Microbiol. 2014;5:603. doi: 10.3389/fmicb.2014.00603, PMID 25477866.

Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol. 2020 Nov 5;11:562813. doi: 10.3389/fmicb.2020.562813, PMID 33224110.

Ramalho M, Jovanovic T, Afonso A, Baia A, Lopes A, Fernandes A. Landfill leachate treatment by immediate one-step lime precipitation, carbonation, and phytoremediation fine-tuning. Environ Sci Pollut Res Int. 2023 Jan 1;30(4):8647-56. doi: 10.1007/s11356-022-18729-7, PMID 35060055.

Taillefumier T, Posfai A, Meir Y, Wingreen NS. Microbial consortia at steady supply. eLife. 2017 May 5;6. doi: 10.7554/eLife.22644, PMID 28473032.

Mahmoudi Jalali F, Chahkandi B, Gheibi M, Eftekhari M, Behzadian K, Campos LC. Developing a smart and clean technology for bioremediation of antibiotic contamination in arable lands. Sustain Chem Pharm. 2023 Jun 1;33:101127. doi: 10.1016/j.scp.2023.101127.

Stottmeister U, Kuschk P, Wiessner A. Full-scale bioremediation and long-term monitoring of a phenolic wastewater disposal lake. Pure Appl Chem. 2010 Jan 3;82(1):161-73. doi: 10.1351/PAC-CON-09-05-05.

Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L. Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Front Plant Sci. 2016 May 31;7:755. doi: 10.3389/fpls.2016.00755, PMID 27303431.

Dutta K, Shityakov S, Khalifa I. New trends in bioremediation technologies toward environment-friendly society: a mini-review. Front Bioeng Biotechnol. 2021;9:666858. doi: 10.3389/fbioe.2021.666858, PMID 34409018.

Bhatt P. Smart bioremediation technologies: microbial enzymes. Smart Biorem Technol Microb Enzymes. 2019 Jan 1:1-408.

Jimenez Diaz V, Pedroza Rodriguez AM, Ramos Monroy O, Castillo Carvajal LC. Synthetic biology: A new era in hydrocarbon bioremediation. Processes. 2022 Apr 6;10(4):712. doi: 10.3390/pr10040712.

Vishwakarma R, Dhaka V, Ariyadasa TU, Malik A. Exploring algal technologies for a circular bio-based economy in rural sector. J Clean Prod. 2022 Jun 20;354. doi: 10.1016/j.jclepro.2022.131653.

Published

01-05-2024

How to Cite

PATIL, R., and S. DESAI. “ADVANCES IN BIOREMEDIATION AGENTS AND PROCESSES FOR REMOVAL OF PERSISTENT CONTAMINANTS FROM ENVIRONMENT”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 5, May 2024, pp. 42-47, doi:10.22159/ijpps.2024v16i5.50724.

Issue

Section

Review Article(s)