ANTIOXIDANT AND INHIBITORY EFFECT OF SELECTED GHANAIAN VEGETABLES ON NITRIC OXIDE EXPRESSION IN LIPOPOLYSACCHARIDE-INDUCED MACROPHAGE CELLS

Authors

  • EBENEZER OFORI-ATTAH Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana https://orcid.org/0000-0002-4371-3698
  • ABIGAIL ANING Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana https://orcid.org/0000-0001-9465-2488
  • ANDREW GORDON Department of Science Laboratory Technology, Accra Technical University P. O. Box GP 561, Accra, Ghana https://orcid.org/0000-0002-9706-7759
  • REGINA APPIAH-OPONG Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana https://orcid.org/0000-0003-4219-7107

DOI:

https://doi.org/10.22159/ijpps.2023v15i9.47781

Keywords:

Antioxidant, Nitric oxide, Lipopolysaccharide, Inflammation

Abstract

Objective: Nitric oxide (NO) is a signaling molecule that plays a key role in the pathogenesis of inflammation. Inhibitors of NO may be useful candidates for the treatment of inflammatory diseases. The study aimed to determine the antioxidant and inhibitory effect of commonly used Ghanaian vegetables, namely Corchorus olitorius (CO), Solanum melongena (SM), Solanum torvum (ST), Xanthosoma sagittifolia (XS) and Abelmoschus esculentus (AE) on NO expression in a Lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cell line.

Methods: The cytotoxic effects of the vegetables on the cell line were determined using a tetrazolium-based colorimetric assay. The inflammatory activity was determined by measuring the inhibition of NO production in LPS-induced RAW 264.7 macrophage cells. Total antioxidant activity, total phenolic, flavonoid, and reduced glutathione contents were evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, Folin-Ciocalteu, aluminium chloride, and O-Phthalaldehyde methods, respectively.

Results: Our results showed that CO and ST significantly inhibited NO production in a concentration-dependent manner with good cell viability. Solanum torvum also exhibited strong antioxidant activity (IC50= 0.466±0.23 mg/ml) with total phenolic content of 230.73±1.84 mg/g GAE, while CO showed high flavonoid content (291.45±2.14 mg/g QUE). Abelmoschus esculentus recorded the highest glutathione content (58.6 µg/g GSH. Saponins, alkaloids, tannins, terpenoids, and cardiac glycosides were present in all the samples except SM and AE, which lacked terpenoids.

Conclusion: These findings suggest that CO and ST possess anti-inflammatory and antioxidant activities that could be explored as potential therapeutic remedies for inflammatory disorders.

Downloads

Download data is not yet available.

References

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018 Jan 23;9(6):7204-18. doi: 10.18632/oncotarget.23208.

Yuan F, Chen J, Sun PP, Guan S, Xu J. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappa B pathway in RAW 264.7 cells. J Biomed Sci. 2013 Oct 31;20(1):1-11. doi: 10.1186/1423-0127-20-84.

Uto T, Qin GW, Morinaga O, Shoyama Y. 17-hydroxy-jolkinolide B, a diterpenoid from Euphorbia fischeriana, inhibits inflammatory mediators but activates heme oxygenase-1 expression in lipopolysaccharide-stimulated murine macrophages. Int Immunopharmacol. 2012 Jan 1;12(1):101-9. doi: 10.1016/j.intimp.2011.10.020.

Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017 Dec 29;19(1):92. doi: 10.3390/ijms19010092.

Won JH, Im HT, Kim YH, Yun KJ, Park HJ, Choi JW. Anti-inflammatory effect of buddlejasaponin IV through the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via the NF- κ B inactivation. Br J Pharmacol. 2006 Mar 6;148(2):216-25. doi: 10.1038/sj.bjp.0706718.

Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012 Apr 1;33(7):829-37. doi: 10.1093/eurheartj/ehr304.

Yoon WJ, Ham YM, Kim SS, Yoo BS, Moon JY, Baik JS. Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. Eur Asia J BioSci. 2009;3(3):130-43. doi: 10.5053/ejobios.2009.3.0.17.

Lucetti DL, Lucetti EC, Bandeira MAM, Veras HN, Silva AH, Leal LKA. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) plumel. J Inflamm. 2010 Dec 17;7(1):60. doi: 10.1186/1476-9255-7-60.

Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010 May 3;16(5):238-46. doi: 10.1016/j.molmed.2010.03.003.

Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int. 2019 Apr 7;2019:1-16. doi: 10.1155/2019/8748253.

Mradu G, Saumyakanti S, Sohini M, Arup M. HPLC profiles of standard phenolic compounds present in medicinal plants. Int J Pharmacogn Phytochem. 2012 Sep;4(3):162-7.

Su MS, Shyu YT, Chien PJ. Antioxidant activities of citrus herbal product extracts. Food Chem. 2008 Dec 1;111(4):892-6. doi: 10.1016/j.foodchem.2008.05.002.

Garg D, Shaikh A, Muley A, Marar T. In vitro antioxidant activity and phytochemical analysis in extracts of Hibiscus rosa-sinensis stem and leaves. Free Radic Antioxid. 2012;2(3):41-6. doi: 10.5530/ax.2012.3.6.

Appiah Opong R, Ankrah NA, Nyarko AK, Ofori Attah E, Agordzo E. Inhibition of aflatoxin b1 8-9 epoxide formation by some selected Ghanaian vegetables. J Ghana Sci Assoc. 2015;16(1):44-52.

Pattanayak SP, Mazumder PM, Sunita P. Total phenolics content, flavonoid content and in vitro antioxidant activity of Dendrophthoe falcate Ettingsh. Int J Pharmtechn Res. 2012;9(7):1392-406.

Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Boget S. Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chromatogr. 2001;752(1):123-32. doi: 10.1016/S0378-4347(00)00534-X.

Acheampong F, Larbie C, Appiah Opong R, Arthur F, Tuffour I. In vitro antioxidant and anticancer properties of hydroethanolic extracts and fractions of ageratum conyzoides. Eur J Med Plants. 2015 Apr 1;7(4):205-14. doi: 10.9734/EJMP/2015/17088.

Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in the induction of nitric oxide synthase. J Biol Chem. 1994 Feb 18;269(7):4705-8. doi: 10.1016/S0021-9258(17)37600-7.

Henkel R, Maaß G, Hajimohammad M, Menkveld R, Stalf T, Villegas J. Urogenital inflammation: changes of leucocytes and ROS. Andrologia. 2003 Jan 29;35(5):309-13. doi: 10.1111/j.1439-0272.2003.tb00863.x.

Yang EJ, Yim EY, Song G, Kim GO, Hyun CG. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip Toxicol. 2009 Dec 28;2(4):245-9. doi: 10.2478/v10102-009-0022-2.

Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007 Dec;15(6):252-9. doi: 10.1007/s10787-007-0013-x.

Murakami A, Ishida H, Kubo K, Furukawa I, Ikeda Y, Megumi Yonaha M. Suppressive effects of okinawan food items on free radical generation from stimulated leukocytes and identification of some active constituents: implications for the prevention of inflammation-associated carcinogenesis. Asian Pac J Cancer Prev. 2005;6(4):437-48.

Prakash V. Terpenoids as source of anti-inflammatory compounds. Asian J Pharm Clin Res. 2017;10(3):68-76. doi: 10.22159/ajpcr.2017.v10i3.16435.

RA, Naika R. Anti-inflammatory properties of Pavetta crassicaulis bremek. leaf and flower crude extracts and its pure compounds collected from Western Ghats, Karnataka, India. Asian J Pharm Clin Res. 2018;11(9):72-90. doi: 10.22159/ajpcr.2018.v11i9.21885.

Widowati W, Jasaputra DK, Gunawan KY, Kusuma HSW, Arumwardana S, Wahyuni CD, Lister INE, Ginting CN, Girsang E, Rizal R. Turmeric extract potential inhibit inflammatory marker in LPS-stimulated macrophage cells. In J Appl Pharm. 2021;13(3):7-11.

Mira L, Tereza Fernandez M, Santos M, Rocha R, Helena Florencio M, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res. 2002 Nov;36(11):1199-208. doi: 10.1080/1071576021000016463.

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018 Aug 25;5(3):93. doi: 10.3390/medicines5030093.

Ghasemzadeh A, Ghasemzade N. Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res. 2011;5(31):6697-703. doi: 10.5897/JMPR11.1404.

Espinosa Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez Perez P, Cadenas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015 Dec 16;6:183-97. doi: 10.1016/j.redox.2015.07.008.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Phcog Rev. 2010;4(8):118-26. doi: 10.4103/0973-7847.70902.

Hamid AA, Aiyelaagbe OO, Usman LA, Ameen OM, Lawal A. Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl Chem. 2010 Aug 31;4(8):142-51.

Kurutas EB. The importance of antioxidants which play a role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2015;15(1):71. doi: 10.1186/s12937-016-0186-5.

Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011 Jan;155(1):2-18. doi: 10.1104/pp.110.167569.

Mendoza Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol‐peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008 Apr;54(2):249-59. doi: 10.1111/j.1365-313X.2008.03410.x.

Katerere DR, Graziani G, Thembo KM, Nyazema NZ, Ritieni A. Antioxidant activity of some African medicinal and dietary leafy African vegetables. Afr J Biotechnol. 2012 Feb 24;11(17):4103-8.

Nishanthini A, Mohan VR. Antioxidant activities of Xanthosoma sagittifolium Schott using various in vitro assay models. Asian Pac J Trop Biomed. 2013;2(3):1701-6.

Agoreyo BO, Okhihie O, Agoreyo FO. Glutathione and vitamin E contents of Eggplants (Solanum spp.) during ripening. Niger J Pharm Sci. 2013 Mar;2(1):41-4.

Zeghichi S, Kallithraka S, Simopoulos AP. Nutritional composition of molokhia (Corchorus olitorius) and stamnagathi (Cichorium spinosum). World Rev Nutr Diet. 2003;91:1-21. doi: 10.1159/000069924.

Published

01-09-2023

How to Cite

OFORI-ATTAH, E., A. ANING, A. GORDON, and R. APPIAH-OPONG. “ANTIOXIDANT AND INHIBITORY EFFECT OF SELECTED GHANAIAN VEGETABLES ON NITRIC OXIDE EXPRESSION IN LIPOPOLYSACCHARIDE-INDUCED MACROPHAGE CELLS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 9, Sept. 2023, pp. 1-5, doi:10.22159/ijpps.2023v15i9.47781.

Issue

Section

Original Article(s)

Most read articles by the same author(s)