نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، دانشکده علوم وفنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران.

2 گروه بیوتکنولوژی، زیست فناوری پزشکی و صنایع داروئی، سازمان تحقیقات علمی و صنعتی ایران، تهران، ایران.

3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

4 گروه مهندسی ژنتیک - ژنومیکس، پژوهشکده بیوتکنولوژی کشاورزی ایران (ABRII) واحد اصفهان، اصفهان، ایران.

چکیده

در آبزی پروری مدرن باید مصرف انرژی، مواد خام مورد استفاده و اثرات زیست محیطی در نظر گرفته شوند لذا در طول دهه اخیر، آنزیم فیتاز توسط کارخانه های صنایع خوراک آبزیان به عنوان مکمل آنزیمی برای افزایش قابلیت هضم و جذب منابع پروتئینی گیاهی جیره، بهبود عملکرد رشد و کاهش آلودگی فسفر در محیط های آبی استفاده شده است. در این مطالعه با بهره گیری از سیستم تناوب‌هایِ کوتاهِ پالیندرومِ فاصله‌دارِ منظمِ خوشه‌ای (CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats) اقدام به انتقال و درج ژن فیتاز باکتریایی به میکروجلبک مدل Chlamidomonas reinhardtii در جایگاه طراحی شده ژن نیترات ردوکتاز (NR) گردید و ویرایش صحیح ژنوم ریزجلبک با روش PCR بررسی و مورد تایید قرار گرفت. همچنین تایید کارآیی و بیان ژن فیتاز جایگذاری شده در جایگاه NR با استفاده از ژل SDS PAGE مورد بررسی قرار گرفت. نتایج کشت جلبک، حضور کلنی‌های مثبت دارای ویرایش صحیح بر روی محیط‌ انتخابی در طول 15 نسل در دوره زمانی 150 روزه را نشان داد که خود نشان دهنده پایداری ویرایش صحیح بدون خاموشی ژن بود. همچنین ترجمه ژن فیتاز به عنوان تأیید بیان ژن انتقالی درج شده در سطح پروتئین توسط SDS PAGE بر روی پنج کلنی حاوی ویرایش صحیح و یک کلنی نمونه کنترل مورد تأیید قرار گرفت که نشان دهنده موفقیت رونویسی و ترجمه ژن فیتاز درج شده در جایگاه اگزون 2 ژن NR ریز جلبک است. با توجه به مزایای تولید و استفاده از آنزیم فیتاز نوترکیب در جیره های غذایی آبزیان از جمله استفاده بیشتر از منابع پروتئینی گیاهی، کاهش هزینه های تولید و کاهش غنی شدن بیش از حد مواد آلی در اکوسیستم های آبی، استفاده از این روش برای توسعه صنعت خوراک آبزیان و آبزی پروری مدرن توصیه می شود.

کلیدواژه‌ها

موضوعات

Andersen, R.A., 2005. Algal culturing techniques. Elsevier. doi:10.1111/j.1529-8817.2005.00114.x.
Ansai, S., Mochida, K., Fujimoto, S., Mokodongan, D.F., Sumarto, B.K.A., Masengi, K.W.A., Hadiaty, R.K., Nagano, A.J., Toyoda, A., Naruse, K., others, 2021. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat. Commun. 12, 1350. doi: 10.1038/s41467-021-21697-0.
Baek, K., Kim, D.H., Jeong, J., Sim, S.J., Melis, A., Kim, J.-S., Jin, E., Bae, S., 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6, 1–7. doi: 10.1038/srep30620.
Bali, A., Satyanarayana, T., 2001. Microbial phytases in nutrition and combating phosphorus pollution. Everyman’s Sci 4, 207–209.
Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., Li, D., 2007. Application of microbial phytase in fish feed. Enzyme Microb. Technol. 40, 497–507. doi: 10.1016/j.enzmictec.2007.01.007.
Chen, H., Wang, J., Du, J., Si, Z., Yang, H., Xu, X., Wang, C., 2019. ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture 498, 230–235. doi: 10.1016/j.aquaculture.2018.08.057.
Chen, J., Jiang, D., Tan, D., Fan, Z., Wei, Y., Li, M., Wang, D., 2017. Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in male tilapia, Oreochromis niloticus. Sci. Rep. 7, 43733. doi:  10.1038/srep43733.
Chen, J., Wang, W., Tian, Z., Dong, Y., Dong, T., Zhu, H., Zhu, Z., Hu, H., Hu, W., 2018. Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus). Front. Genet. 9, 117. doi: 10.3389/fgene.2018.00117
Council, N.R., others, 1993. Nutrient requirements of fish. National Academies Press.
Cyranoski, D., 2016. CRISPR gene-editing tested in a person for the first time. Nature 539. doi: 10.1038/nature.2016.20988.
Dahiya, S., 2016. Industrial application of phytases. Int J Appl Res 2, 95–98.
Dahiya, S., Singh, N., Rana, J.S., 2009. Optimization of growth parameters of phytase producing fungus using RSM.
Datsomor, A.K., Zic, N., Li, K., Olsen, R.E., Jin, Y., Vik, J.O., Edvardsen, R.B., Grammes, F., Wargelius, A., Winge, P., 2019. CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci. Rep. 9, 7533. doi: 10.1038/s41598-019-43862-8.
Dawood, M.A.O., Koshio, S., Ishikawa, M., Yokoyama, S., others, 2015. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of amberjack, Seriola dumerili juveniles. Biomed Res. Int. 2015. doi: 10.1155/2015/514196.
Denstadli, V., Skrede, A., Krogdahl, Å., Sahlstrøm, S., Storebakken, T., 2006. Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquaculture 256, 365–376. doi: 10.1016/j.aquaculture.2006.02.021
Elaswad, A., Khalil, K., Cline, D., Page-McCaw, P., Chen, W., Michel, M., Cone, R., Dunham, R., 2018. Microinjection of CRISPR/Cas9 protein into channel catfish, Ictalurus punctatus, embryos for gene editing. JoVE (Journal Vis. Exp. e56275. doi: 10.3791/56275.
Erpel, F., Restovic, F., Arce-Johnson, P., 2016. Development of phytase-expressing Chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnol. 16, 1–7. doi: 10.1186/s12896-016-0258-9.
Gorman, D.S., Levine, R.P., 1965. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. 54, 1665–1669. doi: 10.1073/ pnas.54.6.1665.
Grabski, A.C., Burgess, R.R., 2001. Preparation of protein samples for SDS-polyacrylamide gel electrophoresis: procedures and tips. Innovations 13, 1–12.
Gratacap, R.L., Wargelius, A., Edvardsen, R.B., Houston, R.D., 2019. Potential of genome editing to improve aquaculture breeding and production. Trends Genet. 35, 672–684. doi: 10.1016/j.tig.2019.06.006.
Hallerman, E., 2021. Genome editing in cultured fishes. CABI Agric. Biosci. 2, 1–19. doi: 10.1186/s43170-021-00066-3.
Hu, L., Feng, S., Liang, G., Du, J., Li, A., Niu, C., 2021. CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18. AMB Express. doi: 10.1186/s13568-021-01242-4.
Hussain, S.M., Afzal, M., Javid, A., Hussain, A.I., Ali, Q., Mustafa, I., Chatha, S.A.S., Shah, S.Z.H., Hussain, M., Ullah, M.I., 2015. Efficacy of Phytase Supplementation on Growth Performance and Mineral Digestibility of Labeo rohita Fingerlings Fed on Cottonseed Meal Based Diet. Pak. J. Zool. 47.
Hussain, S.M., Afzal, M., Rana, S.A., Javid, A., Hussain, M., 2011. Impact of phytase supplementation on nutrient digestibility for Labeo rohita fingerlings fed on sunflower meal based diets. Pak. J. Life Soc. Sci 9, 85–90.
Jiang, D., Chen, J., Fan, Z., Tan, D., Zhao, J., Shi, H., Liu, Z., Tao, W., Li, M., Wang, D., 2017. CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev. Biol. 428, 63–73. doi: 10.1016/j.ydbio.2017.05.017
Kadkhodaei, S., Hashemi, F.S.G., Rezaei, M.A., Abbasiliasi, S., Tan, J.S., Memari, H.R., Bande, F., Baradaran, A., Moradpour, M., Arbakariya, B., others, 2018. Cis/Transgene Optimization: Systematic Discovery of Novel Gene Expression Elements Using Bioinformatics and Computational Biology Approaches. Springer. doi: 10.1007/978-3-319-90391-0_4
Khalil, K., Elayat, M., Khalifa, E., Daghash, S., Elaswad, A., Miller, M., Abdelrahman, H., Ye, Z., Odin, R., Drescher, D., others, 2017. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci. Rep. 7, 7301. doi: 10.1038/s41598-017-07223-7
Kim, J., Cho, J.Y., Kim, J.-W., Kim, H.-C., Noh, J.K., Kim, Y.-O., Hwang, H.-K., Kim, W.-J., Yeo, S.-Y., An, C.M., others, 2019. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus. Aquaculture 512, 734336. doi:10.1016/j.aquaculture.2019.7343 36.
Kishimoto, K., Washio, Y., Yoshiura, Y., Toyoda, A., Ueno, T., Fukuyama, H., Kato, K., Kinoshita, M., 2018. Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture 495, 415–427. doi: 10.1016/j.aquaculture.2018.05.055.
Kleppe, L., Andersson, E., Skaftnesmo, K.O., Edvardsen, R.B., Fjelldal, P.G., Norberg, B., Bogerd, J., Schulz, R.W., Wargelius, A., 2017. Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci. Rep. 7, 12584. doi: 10.1038/s41598-017-12936-w.
Kumar, N., Sharma, R., Tripathi, G., Kumar, K., Dalvi, R.S., Krishna, G., 2016. Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in Tilapia (O reochromis mossambicus). Environ. Toxicol. 31, 106–115. doi: 10.1002/tox.22026
Laemmli, 2011. Laemmli SDS PAGE Fanglian He Carnegie Institution at Stanford. Bio-Protocol.Org 1, 3–6.
Lei, X.G., Stahl, C.H., 2000. Nutritional benefits of phytase and dietary determinants of its efficacy. J. Appl. Anim. Res. 17, 97–112. doi: 10.1080/09712119.2000.9706294.
Lei, X.G., Weaver, J.D., Mullaney, E., Ullah, A.H., Azain, M.J., 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1, 283–309. doi: 10.1146/annurev-animal-031412-103717.
Li, Minghui, Yang, H., Zhao, J., Fang, L., Shi, H., Li, Mengru, Sun, Y., Zhang, X., Jiang, D., Zhou, L., others, 2014. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197, 591–599. doi: 10.1534/genetics.114.163667.
Ma, H., Marti-Gutierrez, N., Park, S.-W., Wu, J., Lee, Y., Suzuki, K., Koski, A., Ji, D., Hayama, T., Ahmed, R., others, 2017. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419. doi: 10.1038/nature23305.
Ma, J., Fan, Y., Zhou, Y., Liu, W., Jiang, N., Zhang, J., Zeng, L., 2018. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish \& Shellfish Immunol. 76, 206–215. doi: 10.1016/j.fsi.2018.02.039.
Morales, G.A., Márquez, L., de Rodrigañez, M., Bermúdez, L., Robles, R., Moyano, F.J., 2014. Effect of phytase supplementation of a plant-based diet on phosphorus and nitrogen bioavailability in sea bream Sparus aurata. Aquac. Nutr. 20, 172–182. doi: 10.1111/anu.12063.
Naduthodi, M.I.S., Mohanraju, P., Südfeld, C., D’Adamo, S., Barbosa, M.J., Van Der Oost, J., 2019. CRISPR--Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol. Biofuels 12, 1–11. doi: 10.1186/s13068-019-1401-3.
Ohama, M., Washio, Y., Kishimoto, K., Kinoshita, M., Kato, K., 2020. Growth performance of myostatin knockout red sea bream Pagrus major juveniles produced by genome editing with CRISPR/Cas9. Aquaculture 529, 735672. doi: 10.1016/j.aquaculture.2020.735672
Osmond, A.T.Y., Colombo, S.M., 2019. The future of genetic engineering to provide essential dietary nutrients and improve growth performance in aquaculture: advantages and challenges. J. World Aquac. Soc. 50, 490–509. doi: 10.1111/jwas.12595.
Patel, V.K., Soni, N., Prasad, V., Sapre, A., Dasgupta, S., Bhadra, B., 2019. CRISPR–Cas9 System for Genome Engineering of Photosynthetic Microalgae. Mol. Biotechnol. 61, 541–561. doi: 10.1007/s12033-019-00185-3.
Potvin, G., 2015. Development and Optimization of Novel Platforms for the Production of Recombinant Proteins. Université d’Ottawa/University of Ottawa. doi: 10.20381/ruor-4228
Rabia, S., Afzal, M., Shah, S.Z.H., 2017. Nutrient digestibility performance by rohu (Labeo rohita) juveniles fed acidified and phytase pre-treated sunflower meal-based diet. J. Appl. Anim. Res. 45, 331–335. doi: 10.1080/09712119.2016.1190731.
Reddy, N.R., 2001. Occurrence, distribution, content, and dietary intake of phytate. In: Food Phytates. CRC Press, pp. 41–68.
Roy, S., Kumar, V., Behera, B.K., Parhi, J., Mohapatra, S., Chakraborty, T., Das, B.K., 2022. CRISPR/Cas Genome Editing—Can It Become a Game Changer in Future Fisheries Sector? Front. Mar. Sci. 9, 924475. doi: 10.3389/fmars.2022.924475.
Scheben, A., Wolter, F., Batley, J., Puchta, H., Edwards, D., 2017. Towards CRISPR/Cas crops--bringing together genomics and genome editing. New Phytol. 216, 682–698. doi: 10.1111/nph.14702.
Segev-Hadar, A., Slosman, T., Rozen, A., Sherman, A., Cnaani, A., Biran, J., 2021. Genome editing using the CRISPR-Cas9 system to generate a solid-red germline of Nile tilapia (Oreochromis niloticus). Cris. J. 4, 583–594. doi: 10.1089/crispr.2020.0115.
Seruggia, D., Montoliu, L., 2014. The new CRISPR--Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 23, 707–716. doi: 10.1007/s11248-014-9823-y
Shahzad, M.M., Hussain, S.M., Jabeen, F., Hussain, A.I., Ahmad, S., Ashraf, A., Arsalan, M.Z.-H., 2017. Effect of phytase supplementation on mineral digestibility to Catla catla fingerlings fed Moringa oleifera leaf meal based test diets. Punjab Univ. J. Zool 32, 65–73.
Shin, S.E., Lim, J.M., Koh, H.G., Kim, E.K., Kang, N.K., Jeon, S., Kwon, S., Shin, W.S., Lee, B., Hwangbo, K., Kim, J., Ye, S.H., Yun, J.Y., Seo, H., Oh, H.M., Kim, K.J., Kim, J.S., Jeong, W.J., Chang, Y.K., Jeong, B.R., 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. doi: 10.1038/srep27810.
Simora, R.M.C., Xing, D., Bangs, M.R., Wang, W., Ma, X., Su, B., Khan, M.G.Q., Qin, Z., Lu, C., Alston, V., others, 2020. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Sci. Rep. 10, 22271. doi: 10.1038/s41598-020-79409-5.
Sun, Y., Yan, C., Liu, M., Liu, Y., Wang, W., Cheng, W., Yang, F., Zhang, J., 2020. CRISPR/Cas9-mediated deletion of one carotenoid isomerooxygenase gene (EcNinaB-X1) from Exopalaemon carinicauda. Fish \& Shellfish Immunol. 97, 421–431. doi: 10.1016/j.fsi.2019.12.037.
Sun, Y., Zheng, G.-D., Nissa, M., Chen, J., Zou, S.-M., 2020. Disruption of mstna and mstnb gene through CRISPR/Cas9 leads to elevated muscle mass in blunt snout bream (Megalobrama amblycephala). Aquaculture 528, 735597.doi:10.1016/j.aquaculture.2020. 735597.
Turner, B.L., Richardson, A.E., Mullaney, E.J., 2007. Inositol phosphates: linking agriculture and the environment. CABI. doi: 10.1079/9781845931520.0000
Vikas, K., Debtanu, B., Kundan, K., Vikash, K., Mandal, S.C., Clercq, E. de, others, 2012. Anti-nutritional factors in plant feedstuffs used in aquafeeds. World Aquac. 43, 64–68.
von Danwitz, A., van Bussel, C.G.J., Klatt, S.F., Schulz, C., 2016. Dietary phytase supplementation in rapeseed protein based diets influences growth performance, digestibility and nutrient utilisation in turbot (Psetta maxima L.). Aquaculture 450, 405–411. doi: 10.1016/j.aquaculture.2015.07.026
Wang, Q., Liu, Y., Han, C., Yang, M., Huang, F., Duan, X., Wang, S., Yu, Y., Liu, J., Yang, H., others, 2021. Efficient RNA virus targeting via CRISPR/CasRx in fish. J. Virol. 95, 10–1128. doi: 10.1128/jvi.00461-21.
Wargelius, A., 2019. Application of genome editing in aquatic farm animals: Atlantic salmon. In: Transgenic Research. pp. 101–105. doi: 10.1007/s11248-019-00163-0
Xie, Q.-P., He, X., Sui, Y.-N., Chen, L.-L., Sun, L.-N., Wang, D.-S., 2016. Haploinsufficiency of SF-1 causes female to male sex reversal in Nile tilapia, Oreochromis niloticus. Endocrinology 157, 2500–2514. doi: 10.1210/en.2015-2049.
YILDIRIM, A., 2022. Fine-Tuning of Protein Extraction From Wall-Deficient Chlamydomonas reinhardtii Using Liquid Nitrogen and Sonication-Assisted Cell Disruption. Mar. Sci. Technol. Bull. 11, 32–40.doi: 10.33714/masteb.1057346.
Yoon, S.-M., Kim, S.Y., Li, K.F., Yoon, B.H., Choe, S., Kuo, M.M.-C., 2011. Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl. Microbiol. Biotechnol. 91, 553–563. doi; 10.1007/s00253-011-3279-2
Yu, H., Li, H., Li, Q., Xu, R., Yue, C., Du, S., 2019. Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Mar. Biotechnol. 21, 301–309. doi: 10.1007/s1 0126-019-09885-y
Zadabbas Shahabadi, H., Akbarzadeh, A., Ofoghi, H., Kadkhodaei, S., 2023. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. Front. Plant Sci. 14, 1–13. doi: 10.3389/fpls.2023.1150436.
Zhai, G., Shu, T., Chen, K., Lou, Q., Jia, J., Huang, J., Shi, C., Jin, X., He, J., Jiang, D., others, 2022. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp. Engineering 8, 181–189. doi: 10.1016 /j.eng.2021.03.026.
Zhong, Z., Niu, P., Wang, M., Huang, G., Xu, S., Sun, Y., Xu, X., Hou, Y., Sun, X., Yan, Y., others, 2016. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 6, 22953. doi: 10.1038/srep22953
Zhou, Q.-C., Tan, B.-P., Mai, K.-S., Liu, Y.-J., 2004. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture 241, 441–451. doi: 10.1016/j.aquaculture.2004.08.044.