Numerical Analysis of Solar Air Heater Roughened with B-Shape and D-Shape Roughness Geometry

Document Type : Full Lenght Research Article

Authors

1 Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, 248007, U.K., India

2 Department of Mechanical Engineering, National Institute of Technology, Hamirpur, 177005, H.P., India

Abstract

A 2-D computational analysis of heat transfer augmentation and fluid flow characteristics with B-shaped and D-shaped artificial roughness has been carried out under the Reynolds number (Re) range from 4000-20000. Comparing the predictions of different turbulence models with experimental results available in the literature, the renormalization group k-Ɛ (RNG) turbulence model is selected for the present study. A detailed analysis of heat transfer variation was done using various geometrical parameters such as four different pitch (P) values of 10, 15, 20, and 25 mm corresponding to pitch ratio (P/e) of 11.111, 16.666, 22.222, and 27.777 respectively, at constant height (e) of 0.9 mm. The highest value of Nusselt number (Nu) improvement reached up to 2.264 times and 21.91 times at P/e of 11.111 for B-shape and D-shape roughness respectively for Re of 20000 as compared to the smooth channel. A significant enhancement of heat transfer is predicted in the present simulation and the maximum Thermohydraulic Performance Parameter (THPP) attained up to 1.47 for B-shaped roughness. The novelty of the proposed model appears as present numerical findings offer better performance compared to existing research.

Keywords

Main Subjects


  1. Tsoutsos, T., Frantzeskaki, N. and Gekas, V., 2005. Environmental impacts from the solar energy technologies. Energy Policy, 33(3), pp.289–296. doi:https://doi.org/10.1016/s03014215(03)00241-6.
  2. Wang, Q. and Qiu, H. N., 2009. Situation and outlook of solar energy utilization in Tibet, China. Renewable and Sustainable Energy Reviews, 13(8), pp.2181–2186. doi:https://doi.org/10.1016/j.rser.2009.03.011.
  3. Saidur, R., Islam, M.R., Rahim, N.A. and Solangi, K.H., 2010. A review on global wind energy policy. Renewable and Sustainable Energy Reviews, 14(7), pp.1744–1762. doi:https://doi.org/10.1016/j.rser.2010.03.007.
  4. Goel, V., Hans, V.S., Singh, S., Kumar, R., Pathak, S.K., Singla, M., Bhattacharyya, S., Almatrafi, E., Gill, R.S. and Saini, R.P., 2021. A comprehensive study on the progressive development and applications of solar air heaters. Solar Energy, doi:https://doi.org/10.1016/j.solener.2021.07.040.
  5. Dwivedi, A., Mishra, H., and Nagrath, V., 2021. A Review on Different Performance Enhancement Techniques for Solar Air Heaters. Recent Advances in Mechanical Engineering: Select Proceedings of ITME 2019, pp.1-9. DOI: 10.1007/978-981-15-8704-7_1.
  6. Sharma, S.L. and Debbarma, A., 2022. A review on thermal performance and heat transfer augmentation in solar air heater. International Journal of Sustainable Energy,41 (11), pp.1973-2019.https://doi.org/10.1080/14786451.2022.2125518.
  7. Chaurasia, S., Goel, V. and Debbarma, A., 2023. Impact of hybrid roughness geometry on heat transfer augmentation in solar air heater: A review. Solar Energy. shttps://doi.org/10.1016/j.solener.2023.02.052.
  8. Prasad, K. and Mullick, S.C., 1983. Heat transfer characteristics of a solar air heater used for drying purposes. Applied Energy, 13 (2), pp.83-93. https://doi.org/10.1016/0306-2619(83)90001-6.
  9. Bopche, S.B. and Tandale, M.S. 2009. Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. International Journal of Heat and Mass Transfer, 52 (11-12), pp.2834-2848. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.039.
  10. Arulanandam, S.J., Hollands, K.T. and Brundrett, E., 1999. A CFD heat transfer analysis of the transpired solar collector under no-wind conditions. Solar Energy, 67 (1-3), pp.93-100. https://doi.org/10.1016/S0038092X(00)00042-6.
  11. Chaube, A., Sahoo, P.K. and Solanki, S.C. 2006. Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renewable Energy, 31 (3), pp.317-331. https://doi.org/10.1016/j.renene.2005.01.012.
  12. Chaube, A., Sahoo, P.K. and Solanki, S.C., 2006. Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate. WIT Transactions on Engineering Sciences, 53, pp.43-51. doi:10.2495/HT060051.
  13. Varol, Y. and Oztop, H.F., 2008. A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors. Building and environment, 43 (9), pp.1535-1544. https://doi.org/10.1016/j.buildenv.2007.09.002.
  14. Kumar, S. and Saini, R.P., 2009. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable energy, 34 (5), pp.1285-1291. https://doi.org/10.1016/j.renene.2008.09.015.
  15. Karmare, S.V. and Tikekar, A.N., 2010. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy, 84 (3), pp.409-417. https://doi.org/10.1016/j.solener.2009.12.011.
  16. Soi, A., Singh, R. and Bhushan, B., 2010. Effect of roughness element pitch on heat transfer and friction characteristics of artificially roughened solar air heater duct. International Journal of Advanced Engineering Technology, 1 (3), pp.339-346.
  17. Rajput, R. S., Bhagoria, J. L., Giri, A. K., Kumar, A., 2010. Study of heat transfer and friction characteristic of various artificial roughness in solar air heater duct by using computational fluid dynamics (CFD) software. In: Proceedings of international conference on advances in renewable energy, June 2010.
  18. Sharma, S., Singh, R. and Bhushan, B., 2011. CFD based investigation on effect of roughness element pitch on performance of artificially roughened duct used in solar air heaters. International Journal of Advanced Engineering Technology, 2 (1), pp.234-241.
  19. Gawande, V.B., Dhoble, A.S., Zodpe, D.B., and Chamoli, S., 2016. A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater. Renewable and Sustainable Energy Reviews, 54, pp.550-605. https://doi.org/10.1016/j.rser.2015.10.025.
  20. Jhariya, K., Ranjan, R., and Paswan, M.K., 2015. A CFD based performance analysis of heat transfer enhancement in solar air heater provided with transverse semi-circular ribs. International Journal of Innovative Research in science, Engineering and Technology, 4, pp.4528-4537.
  21. Kumar, K., Kaushik, S. and Bisht, V.S., 2017. CFD analysis on solar air heater with artificial roughened broken curved ribs. International Journal of Scientific & Engineering Research, 8, pp.264-275.
  22. Bisht, N. and Bisht, V.S., 2018. CFD Analysis of Solar Air Heater Roughened With Crown Shape Roughness. Asian Journal of Applied Science and Technology,2 (3), pp.73-82.
  23. Ghildyal, A., Bisht, V.S., Bisht, A.S. and Kishor, K., 2020. Computational Fluid Dynamics Study of Roughened Solar Air Heater. Advanced Science, Engineering and Medicine, 12(11), pp.1408-1411.  https://doi.org/10.1166/asem.2020.2595.
  24. Bisht, V.S., Patil, A.K. and Gupta, A., 2020. Thermo-Hydraulic Performance of Solar Air Heater Roughened with V-Shaped Ribs Combined with V-Shaped Perforated Baffles. In Advances in Energy Research, Vol. 2: Selected Papers from ICAER 2017, Springer Singapore, 123-132. DOI: 10.1007/978-981-15-2662-6_12.
  25. Bahuguna, R., Chamoli, S., Barthwal, Y., Rana, S., Gupta, A., and Bisht, V.S., 2022. Economic analysis of artificially roughened solar air heater with v-shaped ribs. Acta Innovations, 44, pp.18-33. https://doi.org/10.32933/ActaInnovations.44.2
  26. Bahuguna, R., Mer, K.K.S., Kumar, M., Chamoli, S., 2021. Thermohydraulic performance and second law analysis of a tube embedded with multiple helical tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1–23. https://doi.org/10.1080/15567036.2021.1904057.
  27. Chamoli, S., Lu, R., Jin Xie, J., and Yu, P., 2018. Numerical Study on Flow Structure and Heat Transfer in a Circular Tube Integrated with Novel Anchor Shaped Inserts. Applied Thermal Engineering, 135, pp.304–24. https://doi.org/10.1016/j.applthermaleng.2018.02.052.
  28. Bahuguna, R., Mer, K.K.S., Kumar, M., Chamoli, S., 2021. Entropy generation analysis in a tube heat exchanger integrated with triple blade vortex generator inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1–19. https://doi.org/10.1080/15567036.2021.1918291.
  29. Maithani, R. and Kumar, A., 2020. Correlations Development for Nusselt Number and Friction Factor in a Dimpled Surface Heat Exchanger Tube. Experimental Heat Transfer, 33 (2), pp.101–22. https://doi.org/10.1080/08916152.2019.1573863.
  30. Bahuguna, R., Mer, K.K.S., Kumar, M., Chamoli, S. (2022). Thermal performance of a circular tube embedded with TBVG inserts: an experimental study. Journal of Thermal Analysis and Calorimetry, 147(20), pp.11373-11389. https://doi.org/10.1007/s10973-022-11352-1.
  31. Singh, V. P., Jain, S. and Gupta, J.M.L., 2023. Analysis of the effect of perforation in multi-v rib artificial roughened single pass solar air heater: -Part A. Experimental Heat Transfer, 36(2), 163-182.https://doi.org/10.1080/08916152.2021.1988761.
  32. Singh, V. P., Jain, S. and Gupta, J.M.L., 2022. Analysis of the effect of variation in open area ratio in perforated multi-V rib roughened single pass solar air heater-Part A. Energy sources, part a: recovery, utilization, and environmental effects, pp.1-21. https://doi.org/10.1080/15567036.2022.2029976.
  33. Singh, V. P., Jain, S. and Gupta, J.M.L., 2022. Performance assessment of double-pass parallel flow solar air heater with perforated multi-V ribs roughness—Part B. Experimental Heat Transfer,35(7), pp.1059-1076. https://doi.org/10.1080/08916152.2021.2019147.
  34. Singh, V. P., Jain, S., Karn, A., Dwivedi, G., Kumar, A., Mishra, S. and Kamel, S., 2022. Heat transfer and friction factor correlations development for double pass solar air heater artificially roughened with perforated multi-V ribs. Case Studies in Thermal Engineering, 39, pp.102461. https://doi.org/10.1016/j.csite.2022.102461.
  35. Sarreshtedari, A. and Zamani Aghaee, A., 2014. Investigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel. Journal of Heat and Mass Transfer Research, 1(2), pp.101-106.
  36. Noghrehabadi, A., Hajidavalloo, E. and Moravej, M., 2016. An experimental investigation of performance of a 3-D solar conical collector at different flow rates. Journal of Heat and Mass Transfer Research, 3(1), pp.57-66.
  37. Gupta, N.K. and Alam, T., 2021. A review on augmentation in thermal performance of solar water heater using phase change material. In IOP Conference Series: Materials Science and Engineering, 1116 (1), pp.012075. IOP Publishing. DOI 10.1088/1757-899X/1116/1/012075.
  38. Gupta, N. K. and Alam, T., 2021. A Review on Augmentation in Thermal Performance of Solar Air Heater. In IOP Conference Series: Materials Science and Engineering, 1116 (1), pp. 012064. IOP Publishing. DOI 10.1088/1757-899X/1116/1/012064.
  39. Karmveer, Gupta, N.K., Alam, T., Cozzolino, R. and Bella, G., 2022. A descriptive review to access the most suitable rib’s configuration of roughness for the maximum performance of solar air heater. Energies, 15(8), pp.2800. https://doi.org/10.3390/en15082800.
  40. Karmveer, Gupta, N.K., Siddiqui, M.I.H., Dobrotă, D., Alam, T., Ali, M.A. and Orfi, J., 2022. The effect of roughness in absorbing materials on solar air heater performance. Materials, 15 (9), pp.3088. https://doi.org/10.3390/ma15093088.
  41. Karmveer, Gupta, N.K., Alam, T. and Singh, H., 2022. An Experimental Study of Thermohydraulic Performance of Solar Air Heater Having Multiple Open Trapezoidal Rib Roughnesses. Experimental Heat Transfer, pp.1-21. https://doi.org/10.1080/08916152.2022.2139024.
  42. Gupta, N. K. and Alam, T., 2023. Experimental investigation of thermohydraulic performance of solar thermal collector for sustainable built environment. Sustainable Energy Technologies and Assessments, 57, pp.103257. https://doi.org/10.1016/j.seta.2023.103257.
  43. Karmveer, Gupta, N.K. and Alam, T., 2023. Development of correlations for predicting Nusselt number and friction factor of roughened solar air heater duct for sustainable development. Experimental Heat Transfer, pp.1-19.https://doi.org/10.1080/08916152.2023.2189329.
  44. Gupta, N. K. and Alam, T., 2023. Effect of relative rib roughness pitch on the thermohydraulic performance of roughened duct of solar air heater. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.310.
  45. Bhushan, B. and Singh, R., 2011. Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. Solar energy, 85(5), pp.1109-1118. https://doi.org/10.1016/j.solener.2011.03.007.
  46. Lanjewar, A., Bhagoria, J.L. and Sarviya, R.M., 2011a. Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness. Experimental Thermal and Fluid Science, 35(6), pp.986-995. https://doi.org/10.1016/j.expthermflusci.2011.01.019.
  47. Lanjewar, A., Bhagoria, J.L. and Sarviya, R.M., 2011b. Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy, 36(7), pp.4531-4541. https://doi.org/10.1016/j.energy.2011.03.054.
  48. Kumar, A., Saini, R.P. and Saini, J.S., 2012. Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with Multi v-shaped rib with gap roughness on the heated plate. Solar Energy, 86(6), pp.1733-1749. https://doi.org/10.1016/j.solener.2012.03.014.
  49. Yadav, S. and Kaushal, M., 2013. Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. Experimental Thermal and Fluid Science, 44, pp.34-41. https://doi.org/10.1016/j.expthermflusci.2012.05.011.
  50. Karwa, R. and Chitoshiya, G., 2013. Performance study of solar air heater having v-down discrete ribs on absorber plate. Energy, 55, pp.939-955. https://doi.org/10.1016/j. energy.2013.03.068.
  51. Singh, A.P., 2014. Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters. Experimental Thermal and Fluid Science, 54, pp.117-126. 10.1016/j. expthermflusci.2014.02.004.
  52. Yadav, A. S. and Bhagoria, J.L., 2014. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. International Journal of Heat and Mass Transfer, 70, pp.1016-1039. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074.
  53. Maithani, R. and Saini, J.S., 2017. Performance evaluation of solar air heater having V-ribs with symmetrical gaps in a rectangular duct of solar air heater. International Journal of Ambient Energy, 38(4), pp.400-410. https://doi.org/10.1080/01430750.2015.1133455.
  54. Pandey, N. K., Bajpai, V. K. and Varun, 2016. Heat transfer and friction factor study of a solar air heater having multiple arcs with gap-shaped roughness element on absorber plate. Arabian Journal for Science and Engineering, 41(11), pp.4517-4530. 10.1007/s13369-016-2148-9.
  55. Gawande, V. B., Dhoble, A.S., Zodpe, D.B. and Chamoli, S., 2016a. Analytical approach for evaluation of thermo hydraulic performance of roughened solar air heater. Case Studies in Thermal Engineering, 8, pp.19-31. https://doi.org/10.1016/j.csite.2016.03.003.
  56. Gawande, V.B., Dhoble, A.S., Zodpe, D.B. and Chamoli, S., 2016. Experimental and CFD-based thermal performance prediction of solar air heater provided with chamfered square rib as artificial roughness. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38 (2), pp.643-663. https://doi.org/10.1007/s40430-015-0402-9.
  57. Bharadwaj, G., Varun, Kumar, R. and Sharma, A., 2017. Heat transfer augmentation and flow characteristics in ribbed triangular duct solar air heater: An experimental analysis. International journal of green energy, 14(7), pp.587-598. https://doi.org/10.1080/15435075.2017.1307751.
  58. Sawhney, J.S., Maithani, R. and Chamoli, S., 2017. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied thermal engineering, 117, pp.740-751. https://doi.org/10.1016/j.applthermaleng.2017.01.113.
  59. Gabhane, M.G. and Kanase-Patil, A.B., 2017. Experimental analysis of double flow solar air heater with multiple C shape roughness. Solar Energy, 155, pp.1411-1416. https://doi. org/10.1016/j.solener.2017.07.038.
  60. Kumar, R., Kumar, A. and Goel, V., 2017b. A parametric analysis of rectangular rib roughened triangular duct solar air heater using computational fluid dynamics. Solar Energy, 157, pp.1095-1107. https://doi.org/10.1016/j. solener.2017.08.071.
  61. Alam, T. and Kim, M.H., 2017. Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. Applied Thermal Engineering, 126, pp.458-469. https://doi. org/10.1016/j.applthermaleng.2017.07.181.
  62. Thakur, D.S., Khan, M.K. and Pathak, M., 2017. Solar air heater with hyperbolic ribs: 3D simulation with experimental validation. Renewable Energy, 113, pp.357-368. https://doi. org/10.1016/j.renene.2017.05.096.
  63. Singh, I. and Singh, S., 2018. CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Solar Energy, 162, pp.442-453. 10.1016/j.solener.2018.01.019.
  64. Kumar, A. and Layek, A., 2018. Thermo-hydraulic performance of solar air heater having twisted rib over the absorber plate. International Journal of Thermal Sciences, 133, pp.181-195. https://doi.org/10.1016/j.ijthermalsci.2018.07.026.
  65. Soi, A., Singh, R. and Bhushan, B., 2018. Heat transfer and friction characteristics of solar air heater duct having protruded roughness geometry on absorber plate. Experimental Heat Transfer, 31(6), pp.571-585. https://doi.org/10.1080/08916152.2018.1468832.
  66. Abuşka, M., 2018. Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Applied Thermal Engineering, 131, pp.115-124. https://doi. org/10.1016/j.applthermaleng.2017.11.129.
  67. Debnath, S., Das, B. and Randive, P., 2019. Influences of pentagonal ribs on the performance of rectangular solar air collector. Energy Procedia, 158, pp.1168-1173. https:// doi.org/10.1016/j.egypro.2019.01.300.
  68. Singh, I., Vardhan, S., Singh, S. and Singh, A., 2019. Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy, 188, pp.519-532. https://doi.org/10.1016/j. solener.2019.06.022.
  69. Bezbaruah, P.J., Das, R.S. and Sarkar, B.K., 2019. Thermo-hydraulic performance augmentation of solar air duct using modified forms of conical vortex generators. Heat and Mass Transfer, 55 (5), pp.1387-1403. https:// doi.org/10.1007/s00231-018-2521-1.
  70. Kumar, R., Goel, V., Singh, P., Saxena, A., Kashyap, A. S. and Rai, A., 2019. Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage, 26, pp.100978. https://doi.org/10.1016/j. est.2019.100978.
  71. Wang, D., Liu, J., Liu, Y., Wang, Y., Li, B. and Liu, J., 2020. Evaluation of the performance of an improved solar air heater with “S” shaped ribs with gap. Solar Energy, 195 (13), pp.89-101. https://doi.org/10.1016/j.solener.2019.11.034.
  72. Kumar, R., Kashyap, A. S., Singh, P., Goel, V. and Kumar, K., 2020. Innovatively arranged curved-ribbed solar-assisted air heater: performance and correlation development for heat and flow characteristics. Journal of Solar Energy Engineering, 142(3), pp.031011. https://doi.org/10.1115/1.4045827.
  73. Ahmad, I., Khan, N.H., Hassan, M.A. and Paswan, M.K., 2020. Three-dimensional thermo-hydraulic analysis of solar air heater with equilateral prism-shaped rib roughness. Journal of Solar Energy Engineering, 142(5), pp.051001. https://doi.org/ 10.1115/1.4046088.
  74. Ngo, T.T. and Phu, N.M., 2020. Computational fluid dynamics analysis of the heat transfer and pressure drop of solar air heater with conic-curve profile rib. Journal of Thermal Analysis and Calorimetry, 139 (5), pp.3235-3246. https://doi.org/10.1007/s10973-019- 08709-4.
  75. Rathor, Y. and Aharwal, K.R., 2020. Heat transfer enhancement due to a staggered element using liquid crystal thermography in an inclined discrete rib roughened solar air heater. International Communications in Heat and Mass Transfer, 118, pp.104839. https://doi. org/10.1016/j.icheatmasstransfer.2020.104839.
  76. Mahanand, Y. and Senapati, J.R., 2020. Thermal enhancement study of a transverse inverted-T shaped ribbed solar air heater. International Communications in Heat and Mass Transfer, 119, pp.104922.https://doi.org/10.1016/j.icheatmasstransfer.2020.104922.
  77. Mahanand, Y. and Senapati, J.R., 2021. Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. International Journal of Thermal Sciences, 161, pp.106747. https://doi.org/10.1016/j.ijthermalsci.2020.10674.
  78. Jain, S.K., Agrawal, G.D. and Misra, R., 2021. Heat transfer augmentation using multiple gaps in arc-shaped ribs roughened solar air heater: An experimental study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(24), pp.3345-3356. https://doi.org/10.1080/15567036.2019.1607945.
  79. Azad, R., Bhuvad, S. and Lanjewar, A., 2021. Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach. International Journal of Thermal Sciences, 167, pp.107013. https://doi.org/10.1016/j.ijthermalsci.2021.107013.
  80. Bhuvad, S.S., Azad, R. and Lanjewar, A., 2022. Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study. Renewable Energy, 185, pp.403-415. https://doi.org/10.1016/j.renene.2021.12.037.
  81. Arya, N. and Goel, V., 2023. Comparative study of V-ribs miniature with dimple hybrid roughness along with dimples shaped roughness used in solar air heating system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), pp.3297-3317. https://doi.org/10.1080/15567036.2023.2195822.
  82. Arya, N. Goel, V. and Sunden, B., 2023. Solar air heater performance enhancement with differently shaped miniature combined with dimple shaped roughness: CFD and experimental analysis. Solar Energy, 250, pp.33-50. https://doi.org/10.1016/j.solener.2022.12.024.
  83. Wood, J.N., De Nayer, G., Schmidt, S. and Breuer, M., 2016. Experimental investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere. Flow, Turbulence and Combustion, 97, pp.79-119. doi:10.1007/s10494-015-9690-5.
  84. Chaube, A., Sahoo, P.K. and Solanki, S.C., 2006. Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renewable Energy, 31 (3), pp.317-331. https://doi.org/10.1016/j.renene.2005.01.012.
  85. Standard, A.S.H.R.A.E., 1977. Methods of testing to determine the thermal performance of solar collectors. American Society of Heating, 93-77.
  86. Verma, S.K. and Prasad, B.N., 2000. Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renewable Energy, 20 (1), pp.19-36. https://doi.org/10.1016/S09601481(99)00081-6.
  87. Kays, W.M., 1985. Forced convection, internal flow in ducts. Handbook of heat transfer fundamentals. https://cir.nii.ac.jp/crid/1570291225769794304.bib?lang=ja.
  88. Bhatti, M.S., 1987. Turbulent and transition flow convective heat transfer in ducts. Handbook of single-phase convective heat transfer. https://cir.nii.ac.jp/crid/1573387448915440896.bib?lang=ja.
  89. Webb, R.L. and Eckert, E.R.G., 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer, 15, pp.647–1658, https://doi.org/10.1016/0017-9310 (72)90095-6.
  90. Yadav, A.S. and Bhagoria, J.L., 2014. A numerical investigation of square sectioned transverse rib roughened solar air heater. International Journal of Thermal Sciences, 79, pp.111-131. https://doi.org/10.1016/j.ijthermalsci.2014.01.008.