Effect of nanoparticle loading on the polymer surface (Polyether-block-amide) in CO2/CH4 selectivity

Document Type : Research Paper

Authors

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

In this research, we want to separate carbon dioxide gas from methane gas. Polymer (poly-ether-block-amide) has properties that absorb carbon dioxide well. Zeolite 4 A nanoparticles have fine pores and are proportional to the kinetic diameter of carbon dioxide, so they can act as a molecular sieve in the membrane, this nanoparticle was added to the polymer to obtain Pebax/4A nanocomposite membrane. Nanoparticles can improve carbon dioxide emissions and the thermal and mechanical stability of membranes. In this research, we want to investigate the effect of nano zeolite loading on the permeability and selectivity of carbon dioxide. By adding nanoparticles to the polymer, its structure was changed, so the nanocomposite membrane was evaluated by FESEM, BET, FTIR, and analyses. Finally, permeability, selectivity, diffusion coefficient, and solubility coefficient of carbon dioxide were calculated.

Keywords

1] J. Ahmad and M.-B. H¨agg, Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation, J. Membrane Sci. 427 (2013), 73–84.
[2] M. Asghari, M. Mosadegh and H.R. Harami, Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation, Chemic. Eng. Sci. 187 (2018), 67–78.
[3] N. Azizi, M. Isanejad, T. Mohammadi and R.M. Behbahani, Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes, Front. Chem. Sci. Engin. 13 (2019), no. 3, 517– 530.
[4] A. Brunetti, F. Scura, G. Barbieri and E. Drioli, Membrane technologies for CO2 separation, J. Membrane Sci. 359 (2010), no. 1–2, 115–125.
[5] P.M. Budd, N.B. McKeown, D. Fritsch, Y. Yampolskii and V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity (PIM-1), J. Taiwan Inst. Chem. Engin. (2010), 29–42.
[6] A.H.S. Dehaghani, S. Rashidian, V. Pirouzfar and C.H. Su, The novel composite membranes containing chloride and acid functionalized multiwall carbon nanotube fillers for gas separation, Colloid Polymer Sci. 299 (2021), no. 12, 1933–1944.
[7] A. Ehsani and M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, Journal of the Taiwan Instit. Chem. Engin. 66 (2016), 414–423.
[8] N. Habib, Z. Shamair, N. Tara, A.S. Nizami, F.H. Akhtar, N.M. Ahmad, M.A. Gilani, M.R. Bilad and A.L. Khan, Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO2 capture, Separ. Purific. Technol. 234 (2020), 116101.
[9] H. Hosseinzadeh Beiragh, M. Omidkhah, R. Abedini, T. Khosravi and S. Pakseresht, Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation, Asia-Pacific J. Chemic. Eng. 11 (2016), no. 4, 522–532.
[10] M. Jamshidi, V. Pirouzfar, R. Abedini and M.Z. Pedram, The influence of nanoparticles on gas transport properties of mixed matrix membranes: An experimental investigation and modeling, Korean J. Chemic. Eng. 34 (2017), no. 3, 829–843.
[11] A. Jomekian, R.M. Behbahani, T. Mohammadi and A. Kargari, CO2/CH4 separation by high performance cocasted ZIF 8/Pebax 1657/PES mixed matrix membrane, J. Natural Gas Sci. Engin. 31 (2016), 562–574.
[12] M.S. Jyothi, K.R. Reddy, K. Soontarapa, S. Naveen, A.V. Raghu, R.V. Kulkarni, D.P. Suhas, N.P. Shetti, M.N. Nadagouda and T.M. Aminabhavi, Membranes for dehydration of alcohols via pervaporation, J. Environ. Manag. 242 (2019), 415–429.
[13] F. Karamouz, H. Maghsoudi and R. Yegani, Synthesis of high-performance Pebax®-1074/DD3R mixed-matrix membranes for CO2/CH4 separation, Chem. Eng. Tech. 41 (2018), no. 9, 1767–1775.
[14] E. Khoramzadeh, M. Mofarahi and C.-H. Lee, Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X, 4A, 5A, and Beta, J. Chemic. Eng. Data 64 (2019), no. 12, 5648–5664.
[15] A. Khoshkharam, N. Azizi, R.M. Behbahani and M.A. Ghayyem, Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane, Petroleum Sci. Technol. 35 (2017), no. 7, 667–673.
[16] T. Khosravi, M. Omidkhah, S. Kaliaguine and D. Rodrigue, Amine-functionalized CuBTC/poly(ether-b-amide-6) (Pebax® MH 1657) mixed matrix membranes for CO2/CH4 separation, Canadian J. Chemic. Eng. 95 (2017), no. 10, 2024–2033.
[17] E. Kianfar, V. Pirouzfar and H. Sakhaeinia, An experimental study on absorption/stripping CO2 using Monoethanol amine hollow fiber membrane contactor, J. Taiwan Instit. Chem. Engin. 80 (2017), 954–962.
[18] T. Li, Y. Pan, K.V. Peinemann and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membrane Sci. 425 (2013), 235–242.
[19] H. Lin, B.D. Freeman, S. Kalakkunnath and D.S. Kalika, Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure-and mixed-gas permeability in poly (ethylene glycol)-based materials: Free volume interpretation, J. Membrane Sci. 291 (2007), no. 1–2, 131–139.
[20] M. Monteleone, E. Esposito, A. Fuoco, M. Lanˇc, K. Piln´aˇcek, K. Friess, C.G. Bezzu, M. Carta, N.B. McKeown and J.C. Jansen, A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Pressure dependence of transport parameters, Membranes 8 (2018), no. 3, 73.
[21] R.S. Murali, A.F. Ismail, M.A. Rahman and S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations, Separ. Purific. Technol. 129 (2014), 1–8.
[22] V. Nafisi and M.-B. H¨agg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membrane Sci. 459 (2014), 244–255.
[23] A.V. Raghu, G.S. Gadaginamath, N.T. Mathew, S.B. Halligudi and T.M. Aminabhavi, Synthesis and characterization of novel polyurethanes based on 4, 4’-[1, 4-phenylenedi-diazene-2, 1-diyl] bis (2-carboxyphenol) and 4,4’-[1, 4-phenylenedi diazene-2, 1-diyl] bis (2-chlorophenol) hard segments, React. Funct. Polymers 67 (2007) no. 6, 503–514.
[24] M.M. Rahman, S. Shishatskiy, C. Abetz, P. Georgopanos, S. Neumann, M.M. Khan, V. Filiz and V. Abetz, Influence of temperature upon properties of tailor-made PEBAX® MH 1657 nanocomposite membranes for postcombustion CO2 capture, J. Membrane Sci. 469 (2014), 344–354.
[25] R. Rangarajan, M.A. Mazid, T. Matsuura and S. Sourirajan, Permeation of pure gases under pressure through asymmetric porous membranes, membrane characterization and prediction of performance, Ind. Eng. Chem. Process Des. Dev. 23 (1984), 79–87.
[26] L.M. Robeson, The upper bound revisited, J. Membrane Sci. 320 (2008), no. 1-2, 390–400.
[27] A.H. Saeedi Dehaghani, V. Pirouzfar and A. Alihosseini, Novel nanocomposite membranes-derived poly(4-methyl1 pentene)/functionalized titanium dioxide to improve the gases transport properties and separation performance, Polymer Bull. 77 (2020), no. 12, 6467–6489.
[28] D.P. Suhas, T.M. Aminabhavi, H.M. Jeong and A.V. Raghu, Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application, RSC Adv. 5 (2015), no. 122, 100984–100995.
[29] D.P. Suhas, T.M. Aminabhavi and A.V. Raghu, Mixed matrix membranes of H-ZSM5-loaded poly (vinyl alcohol) used in pervaporation dehydration of alcohols: Influence of silica/alumina ratio, Polymer Eng. Sci. 54 (2014), no. 8, 1774–1782.
[30] L.A. Tuyen, E. Szil´agyi, E. K´otai, K. L´az´ar, L. Botty´an, T.Q. Dung, L.C. Cuong, D.D. Khiem, P.T. Phuc, L.L. Nguyen and P.T. Hue, Structural effects induced by 2.5MeV proton beam on zeolite 4A: Positron annihilation and X-ray diffraction study, Radi. Phys. Chem. 106 (2015), 355–359.
[31] D. Wang, K. Li and W.K. Teo, Effects of temperature and pressure on gas permselection properties in asymmetric membranes, J. Membrane Sci. 105 (1995), no. 1–2, 89–101.
[32] M. Zanetti, G. Camino, R. Thomann and R. M¨ulhaupt, Synthesis and thermal behaviour of layered silicate–EVA nanocomposites, Polymer 42 (2001), no. 10, 4501–4507.
[33] K. Zarshenas, A. Raisi and A. Aroujalian, Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications, J. Membrane Sci. 510 (2016), 270–283.
[34] Y. Zheng, Y. Wu, B. Zhang and Z. Wang, Preparation and characterization of CO2-selective Pebax/NaY mixed matrix membranes, J. Appl. Polymer Sci. 137 (2020), no. 9, p. 48398.
[35] W. Zou, H. Bai, L. Zhao, K. Li and R. Han, Characterization and properties of zeolite as adsorbent for removal of uranium(VI) from solution in fixed bed column, J. Radioanal. Nuclear Chem. 288 (2011), 779–788.
Volume 14, Issue 1
January 2023
Pages 3083-3096
  • Receive Date: 13 April 2022
  • Revise Date: 20 June 2022
  • Accept Date: 27 June 2022