Atorvastatin’s Therapeutic Potential in Atherosclerosis: Inhibiting TGF-β-Induced Proteoglycan Glycosaminoglycan Chain Elongation through ROS-ERK1/2-Smad2L Signaling Pathway Modulation in Vascular Smooth Muscle Cells

Document Type : Original Article

Authors

1 Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Objective: According to the response-to-retention hypothesis, the inception of atherosclerosis is attributed to the
deposition and retention of lipoprotein in the arterial intima, facilitated by altered proteoglycans with hyperelongated
glycosaminoglycan (GAG) chains. Recent studies have elucidated a signaling pathway whereby transforming growth
factor-β (TGF-β) promotes the expression of genes linked to proteoglycan GAG chain elongation (CHSY1 and CHST11)
via reactive oxygen species (ROS) and the downstream phosphorylation of ERK1/2 and Smad2L. Atorvastatin is known
to exhibit pleiotropic effects, including antioxidant and anti-inflammatory. The purpose of the present research was
to ascertain the influence of atorvastatin on TGF-β-stimulated expression of CHST11 and CHSY1 and associated
signaling pathways using an in vitro model.
Materials and Methods: In this experimental study, vascular smooth muscle cells (VSMCs) were pre-incubated
with atorvastatin (0.1-10 μM) prior to being stimulated with TGF-β (2 ng/ml). The experiment aimed to evaluate the
phosphorylation levels of Smad2C, Smad2L, ERK1/2, the NOX p47phox subunit, ROS production, and the mRNA
expression of CHST11 and CHSY1.
Results: Our research results indicated that atorvastatin inhibited TGF-β-stimulated CHSY1 and CHST11 mRNA
expression. Further experiments showed that atorvastatin diminished TGF-β-stimulated ROS production and weakened
TGF-β-stimulated phosphorylation of p47phox, ERK1/2, and Smad2L; however, we observed no effect on the TGF-β-
Smad2C pathway.
Conclusion: These data suggest that atorvastatin demonstrates anti-atherogenic properties through the modulation
of the ROS-ERK1/2-Smad2L signaling pathway. This provides valuable insight into the potential mechanisms by which
atorvastatin exerts its pleiotropic effects against atherosclerosis.

Keywords

Main Subjects


  1. Legein B, Temmerman L, Biessen EA, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013; 70(20): 3847-3869.
  2. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995; 15(5): 551-561.
  3. Ballinger ML, Nigro J, Frontanilla KV, Dart AM, Little PJ. Regulation of glycosaminoglycan structure and atherogenesis. Cell Mol Life Sci. 2004; 61(11): 1296-1306.
  4. Little PJ, Osman N, O’Brien KD. Hyperelongated biglycan: the surreptitious initiator of atherosclerosis. Curr Opin Lipidol. 2008; 19(5): 448-454.
  5. Little PJ, Tannock L, Olin KL, Chait A, Wight TN. Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-beta1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol. 2002; 22(1): 55-60.
  6. Bobik A, Agrotis A, Kanellakis P, Dilley R, Krushinsky A, Smirnov V, et al. Distinct patterns of transforming growth factor-beta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development. Circulation. 1999; 99(22): 2883-2891.
  7. Burch ML, Yang SN, Ballinger ML, Getachew R, Osman N, Little PJ. TGF-beta stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad2. Cell Mol Life Sci. 2010; 67(12): 2077-2090.
  8. Rostam M A, Kamato D, Piva T J, Zheng W, Little P J,Osman N. The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal. 2016; 28(8): 956-966.
  9. Osman N, Ballinger ML, Dadlani HM, Getachew R, Burch ML, Little PJ. p38 MAP kinase mediated proteoglycan synthesis as a target for the prevention of atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2008; 8(4): 287-292.
  10. Zhou Y, Kumarapperuma H, Sichone S, Chia Z J, Little P J, Xu S, et al. Artemisinin inhibits glycosaminoglycan chain synthesizing gene expression but not proliferation of human vascular smooth muscle cells. Biochem Biophys Res Commun. 2020; 532(2): 239-243.
  11. Dadlani H, Ballinger ML, Osman N, Getachew R, Little PJ. Smad and p38 MAP kinase-mediated signaling of proteoglycan synthesis in vascular smooth muscle. J Biol Chem. 2008; 283(12): 7844-7852.
  12. Hinck AP, Mueller TD, Springer TA. Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect Biol. 2016; 8(12): a022103.
  13. Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, et al. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell Signal. 2013; 25(10): 2017-2024.
  14. Anggraeni VY, Emoto N, Yagi K, Mayasari DS, Nakayama K, Izumikawa T, et al. Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis. Biochem Biophys Res Commun. 2011; 406(1): 36-41.
  15. Mohamed R, Dayati P, Mehr RN, Kamato D, Seif F, Babaahmadi- Rezaei H, et al. Transforming growth factor-β1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. J Cell Commun Signal. 2019; 13(2): 225-233.
  16. García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res. 2016; 114: 110-120.
  17. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015; 12(1): 5-23.
  18. Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 2005; 386(Pt 3): 401-416.
  19. Giles GI. The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des. 2006; 12(34): 4427-4443.
  20. Ludman A, Venugopal V, Yellon DM, Hausenloy DJ. Statins and cardioprotection--more than just lipid lowering? Pharmacol Ther. 2009; 122(1): 30-43.
  21. Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med. 2008; 14(1): 37-44.
  22. Pang X, Si J, Xu S, Li Y, Liu J. Simvastatin inhibits homocysteine- induced CRP generation via interfering with the ROS-p38/ ERK1/2 signal pathway in rat vascular smooth muscle cells. Vascul Pharmacol. 2017; 88: 42-47.
  23. Axel DI, Riessen R, Runge H, Viebahn R, Karsch KR. Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures. J Cardiovasc Pharmacol. 2000; 35(4): 619-629.
  24. Feng B, Xu L, Wang H, Yan X, Xue J, Liu F, et al. Atorvastatin exerts its anti-atherosclerotic effects by targeting the receptor for advanced glycation end products. Biochim Biophys Acta. 2011; 1812(9): 1130-1137.
  25. DiNicolantonio JJ, Lavie CJ, Serebruany VL, O’Keefe JH. Statin wars: the heavyweight match--atorvastatin versus rosuvastatin for the treatment of atherosclerosis, heart failure, and chronic kidney disease. Postgrad Med. 2013; 125(1): 7-16.
  26. Profumo E, Buttari B, Saso L, Rigano R. Pleiotropic effects of statins in atherosclerotic disease: focus on the antioxidant activity of atorvastatin. Curr Top Med Chem. 2014; 14(22): 2542- 2551.
  27. Bao XM, Zheng H. Atorvastatin attenuates homocysteine-induced migration of smooth muscle cells through mevalonate pathway involving reactive oxygen species and p38 MAPK. Clin Exp Pharmacol Physiol. 2015; 42(8): 865-873.
  28. Liu D, Cui W, Liu B, Hu H, Liu J, Xie R, et al. Atorvastatin protects vascular smooth muscle cells from TGF-β1-stimulated calcification by inducing autophagy via suppression of the β-catenin pathway. Cell Physiol Biochem. 2014; 33(1): 129-141.
  29. Mehr RNM, Kheirollah A, Seif F, Dayati P, Babaahmadi-Rezaei H. Reactive oxygen species and p38MAPK Have a role in the Smad2 linker region phosphorylation induced by TGF-β. Iran J Med Sci. 2018; 43(4): 401-408.
  30. He T, Xiong J, Nie L, Yu Y, Guan X, Xu X, et al. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J Mol Med (Berl). 2016; 94(12): 1359-1371.
  31. Afroz R, Cao Y, Rostam MA, Ta H, Xu S, Zheng W, et al. Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: implications for lipoprotein binding and atherosclerosis. Pharmacol Ther. 2018; 187: 88-97.
  32. Zhang Z, Zhang M, Li Y, Liu S, Ping S, Wang J, et al. Simvastatin inhibits the additive activation of ERK1/2 and proliferation of rat vascular smooth muscle cells induced by combined mechanical stress and oxLDL through LOX-1 pathway. Cell Signal. 2013; 25(1): 332-340.
  33. Peng S, Xu LW, Che XY, Xiao QQ, Pu J, Shao Q, et al. Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy. Front Pharmacol. 2018; 9: 438.
  34. Jeong SJ, Oh GT. Unbalanced redox with autophagy in cardiovascular disease. J Lipid Atheroscler. 2023; 12(2): 132-151.
  35. Wassmann S, Laufs U, Müller K, Konkol C, Ahlbory K, Bäumer AT, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2002; 22(2): 300-305.
  36. Bruder-Nascimento T, Callera GE, Montezano AC, Belin de Chantemele EJ, Tostes RC, Touyz RM. Atorvastatin inhibits pro-inflammatory actions of aldosterone in vascular smooth muscle cells by reducing oxidative stress. Life Sci. 2019; 221: 29-34.
  37. Colucci R, Fornai M, Duranti E, Antonioli L, Rugani I, AydinogluF, et al. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1. Br J Pharmacol. 2013; 169(3): 554-566.
  38. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen- activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct. 2011; 2011: 792639.
  39. Meyer-Ter-Vehn T, Katzenberger B, Han H, Grehn F, Schlunck G. Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci. 2008; 49(9): 3955-3960.
  40. Yang T, Chen M, Sun T. Simvastatin attenuates TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells. Cell Physiol Biochem. 2013; 31(6): 863-874.