تاثیر زاویه پیکربندی بر عملکرد لرزه ای سازه های شبکه قطری بلند فولادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 - استادیار گروه مهندسی عمران ، واحد مهاباد ، دانشگاه آزاد اسلامی ، مهاباد، ایران

2 استادیار گروه مهندسی عمران ، واحد مهاباد ، دانشگاه آزاد اسلامی ، مهاباد، ایران

3 استادیار گروه مهندسی عمران ، واحد بناب ، دانشگاه آزاد اسلامی ، بناب، ایران

چکیده

چکیده

در دهه های اخیر سیستم های سازه‌ای مختلفی جهت ساخت سازه‌های بلند با عملکرد لرزه‌ای مطلوب،‌ پیشنهاد شده است. با توجه به نقش هنر معماری‌ در سازه‌های بلند و تاثیر آن بر جذب گردشگران و سرمایه گذاران بین المللی، طراحان سازه به سمت سیستم‌هایی گرایش یافته‌اند که علاوه بر عملکرد مطلوب سازه‌ای، چشم‌نواز و زیبا نیز باشند. یکی از این سیستم‌ها، سیستم سازه‌ای شبکه قطری است. در تحقیق حاضر پس از مرور تعدادی از پژوهش‌های صورت گرفته در این زمینه، ضمن بررسی عملکرد لرزه‌ای، ضریب رفتار این سازه ها، با روش تحلیل غیرخطی استاتیکی در نرم افزار SAP2000 محاسبه شده‌است. نتایج تحلیل 9 مدل سازه شبکه قطری با تعداد طبقات 18، 36 و 54 با سه زوایه 2/50، 4/67 و 5/74 درجه، نشان می‌دهد به صورت میانگین، مقدار ضریب رفتار برای سازه‌های 18 طبقه‌70/2، برای سازه‌های 36 طبقه 00/3 و برای سازه های 54 طبقه 85/3 می‌باشد. بررسی مدل ها نشان داد که در زوایای 4/67 و 5/74 درجه، سختی سازه بیشتر بوده ولی مقدار جابجایی طبقه بام و نیز دوره تناوب سازه کمتر شده است. ملاحظه می‌شود علاوه بر اینکه از دید سازه‌ای، زاویه مطلوب اعضای قطری در این محدوده قرار دارد، از نظر معماری نیز در این حالت انعطاف پذیری بیشتری در طراحی پلان و نمای سازه وجود خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Configuration angle on Seismic Performance of Tall Steel Diagrid Frames

نویسندگان [English]

  • Reza SojoudiZadeh 1
  • Reza Milanchian 2
  • Hadi Azizian 2
  • Ali Beirami Shahabi 3
1 Assistant Professor, Department of Civil Engineering, Mahabad Branch, Islamic Azad University,Mahabad, Iran
2 Assistant Professor, Department of Civil Engineering, Mahabad Branch, Islamic Azad University,Mahabad, Iran
3 Assistant Professor, Department of Civil Engineering, Bonab Branch, Islamic Azad University, Bonab, Iran
چکیده [English]

In recent decades, different structural systems have been proposed to make tall buildings with suitable seismic performance. According to the art of architecture roll, especially in tall structures, and its effect on the taking attention of tourists and international investors, engineers turned towards systems that compose suitable structural performance with beauty. One of these systems is called diagrid structural system. In this paper after reviewing a number of researches conducted in this field, beside the study of seismic performance, coefficient of behavior of these types of structures are calculated by static nonlinear analysis method using SAP2000 structural analysis software. In this research, 9 structure models with the number of floors 18, 36 and 54 were modeled with three angles of 50.2, 67.4 and 74.5. By examining the results, it was observed that the mean coefficient of behavior for 18, 36 and 54 story models is about 2.70, 3.00 and 3.85 respectively. also, the results shows that using the diagrids by angles of 67.4 and 74.5 degrees, the value of stiffness is increases, and the displacement of the roof floor and the it's period decrees, also the structure is more economical in terms of material consumption, so the optimal angles should be this range, which more flexibility is created in the plan and elevation of the structure.

کلیدواژه‌ها [English]

  • Tall buildings
  • Diagrid
  • Behavior coefficient
  • Seismic performance
  • Ductility
  • Pushover
[1] Heshmati M, Khatami A, Shakib H. (2020) Seismic performance assessment of tubular diagrid structures with varying angles in tall steel buildings. Structures. Volume (25). 113-126.
[2] Boake, T.M. (2014). Diagrid structures: systems, connections, details. Basel, Switzerland: Birkhäuser, 185
[3] Korsavi, S. Maqhareh, M.R. (2014) The Evolutionary Process of Diagrid Structure Towards Architectural, Structural and Sustainability Concepts: Reviewing Case Studies. Architectural Engineering Technology. [Online] Volume (3) Available at: https://www.omicsonline.org/architectural-engineering-technology.php [17. March. 2014].
[4] Boake T.M. (2013) Diagrids, the New Stability System: Combining Architecture with Engineering. In: Architectural Engineering Conference. Pennsylvania: ASCE. 574–583.
[5] Moon K.S, Connor J., and Fernandez J. (2007). Diagrid structural systems for tall buildings: Characteristics and methodology for preliminary design. The Structural Design of Tall and Special Buildings. Volume (16). 205–230.
[6] Leonard. J. (2007). Investigation of shear lag effect in high-rise buildings with diagrid system. B.S. Civil Engineering, Illinois Institute of Technology.
[7] Baker, William, Charles Besjak, Mark Sarkisian, Peter Lee, and Chung-Soo Doo. (2010). Proposed Methodology to Determine Seismic Performance Factors for Steel Diagrid Framed Systems. In 13th U.S. Japan Workshop on Improvement of Structural Design and Construction Practices. Hawaii, ATC, 1-14
[8] Moon K.S. (2011). Diagrid structures for complex-shaped tall buildings. Procedia Engineering. Volume (14).1343–1350.
[9] Zhang, C. Zhao, F. and Liu, Y. (2012). Diagrid tube structures composed of straight diagonals with gradually varying angles. The Structural Design of Tall and Special Buildings. Volume (21). 283–295.
[10] Montuori,G. Mele, E. Brandonisio,G. and De Luca,A. (2013). Design criteria for diagrid tall buildings: Stiffness versus strength. The Structural Design of Tall and Special Buildings. Volume (23). 1294–1314.
[11] Jani Z, K. and P. V. Patel. (2013). Analysis and design of diagrid structural system for high rise steel buildings, Procedia Engineering. Volume (51). 92–100.
[12] Panchal,N. and Patel,V. (2014). Diagrid Structural System: Strategies to Reduce Lateral Forces on High-Rise Buildings, International Journal of Research in Engineering and Technology. Volume (3). 374–378.
[13] Kim, J. and Lee, Y. (2010). Seismic Performance Evaluation of Diagrid System Buildings. The Structural Design of Tall and Special Buildings. Volume (21). 736–749.
[14] Maheriya, S. and Mehta, N. (2020). A Study on Obtaining Optimum Angle for Diagrid Structures. International Research Journal of Engineering and Technology. Volume (02). 1008–1012.
[15] Campbell, K. W. and Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, Volume (30). 1087-1115.
[16] Liu, C. and Xu, D. (2023) Diagrid Core-tube Structure Seismic Performance Based on Equivalent Stiffness Ratio of Inner and Outer Tubes. KSCE Journal of Civil Engineering. Volume (27), Pages1682–1696
[17] Jaiswal, R. and Mahajan, A. (2022). Comparative analysis of building with shear wall & diagrid structure. In. International Conference on Advance Earth Sciences & Foundation Engineering. Mohali, India
[18] ASCE Standard (2013), ASCE/SEI 41-13 Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers. Virginia.
[19] Chopra, A. and Goel, R. (2002). A Modal Pushover Analysis Procedure for Estimating Seismic Demand. Earthquake Engineering and Structural Dynamics, Volume (31). 561-582.
[20] Gupta, A. and Krawinkler, H. (1999). Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures SAC Report No. 132, California, Stanford University, 94305-4020.
[21] Whittaker, A. Constantinou, M. Tsopelas, P. (1999). Nonlinear procedures for seismic evaluation of buildings
The structural design of tall buildings. Volume (8). 1-13.
[22] Agency F. E. M. (2000). Prestandard and Commentary for the seismic rehabilitation of buildings: FEMA 356, American Society of Civil Engineers. Virginia.