اثر فعالیت کاهش یافته بر بیان برخی ژن‌های مرتبط با آتروفی عضلانی در عضله پلانتاریس موش های صحرایی پس از تمرینات مقاومتی، استقامتی و ترکیبی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

مقدمه و هدف: کاهش فعالیت بدنی به روش لیگاسیون عصب نخاعی (SNL) سبب آتروفی عضلانی می شود. هدف از پژوهش حاضر بررسی تاثیر فعالیت کاهش ­یافته به شکل لیگاسیون عصبی بر بیان ژن­ های مرتبط با آتروفی عضلانی (TWEAK و Fn14) پس از تمرینات مقاومتی، استقامتی و ترکیبی بود.
مواد و روش ­ها: تعداد 30 سر موش صحرایی به طور تصادفی به چهار گروه تقسیم شدند: 1. گروه کنترل (7 سر موش)، 2. گروه تمرین ترکیبی (7 سر موش)، 3. گروه تمرین استقامتی (8 سر موش) و 4. گروه تمرین مقاومتی (8 سر موش). مدت برنامه تمرینی گروه ­های 2، 3 و 4، شش هفته و مدت فعالیت کاهش ­یافته، چهار هفته بود. برای سنجش بیان ژن از تکنیک Real time-PCR استفاده شد. برای تعیین تفاوت میان متغیرهای پژوهش از آزمون تحلیل واریانس و آزمون­ تعقیبی توکی در سطع معنی­ داری 0.05 استفاده شد.
یافته‌ها: یافته­ ها نشان داد که بیان ژن­ های TWEAK و Fn14 در اثر فعالیت کاهش­ یافته، افزایش می­ یابد. در گروه ­های تمرین مقاومتی و تمرین ترکیبی نسبت به گروه کنترل، کاهش معنی ­داری در بیان ژن TWEAK (P < span lang="FA">=0.001) مشاهده شد. در گروه تمرین ترکیبی نسبت به گروه کنترل، کاهش­ معنی­ داری در بیان ژن Fn14 (P=0.003) مشاهده شد. با این حال تغییری در بیان ژن­ های TWEAK و Fn14 در گروه تمرین استقامتی نسبت به گروه کنترل مشاهده نشد.

بحث و نتیجه­ گیری: این یافته­ ها نشان می­ دهد که اجرای شش هفته تمرین مقاومتی یا ترکیبی نسبت به تمرین استقامتی پیش از فعالیت کاهش ­یافته (SNL)، از افزایش بیان ژن های ­TWEAK و Fn14 پیشگیری می­ کند. بنابراین حیواناتی که در برنامه تمرینی آنها، تمرین مقاومتی وجود داشت نسبت به گروهی که تنها تمرین استقامتی انجام داده­ اند در برابر آتروفی عضلانی ناشی از کاهش فعالیت بدنی مقاوم ­ترند. 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of decreased physical activity on the expression of muscle atrophy-related genes after resistance, endurance and combined exercise training

نویسندگان [English]

  • Reza Gharakhanlou 1
  • Mehdi Madahi 2
  • Mohammad Ali Azarbayjani 2
1
2
چکیده [English]

Introduction and purpose: Decreased physical activity due to sciatic nerve ligation (SNL) cause muscle atrophy. The purpose of the present study was to investigate the effect of decreased physical activity in the form of spinal nerve ligation (SNL) on the expression of muscle atrophy-related genes (TWEAK and Fn14) after resistance, endurance and combined exercises.
Materials and Methods: Thirty rats were randomly divided into four groups: 1- Control group-SNL (Sham+SNL) (N=7),2- Mixed training group-SNL (Mix+SNL) (N=7), 3- Endurance training group-SNL (TE+SNL) (N=8), and 4- Resistance training group-SNL (LA+SNL) (N=8). Mix+SNL, TE+SNL and LA+SNL groups participated in training program for six weeks. Decreased physical activity was implemented for four weeks. Real time-PCR technique was used to measure gene expression. To determine the difference between research variables, analysis of variance, Tukey's post hoc test were used at a significance level of 0.05.
Results: The results showed that the gene expression of TWEAK and Fn14 increased by decreased activity. The expression of TWEAK in SNL+La and SNL+Mix groups was significantly lower than Sham+SNL group (P=0.001), and the expression of Fn14 was significantly lower only in the SNL+Mix group compared to the Sham+SNL group (P=0.003). However, there was no significant change in the expression of TWEAK and Fn14 genes in SNL+TE group compared to Sham+SNL group.
Discussion and Conclusion: These findings show that performing six weeks of resistance or combined training compared to endurance training before reduced activity (SNL), prevents the increase in the gene expression of TWEAK and Fn14. Therefore, the animals that included resistance training in their training program are more resistant to muscle atrophy caused by reduced physical activity than the group that only did endurance training.

کلیدواژه‌ها [English]

  • Decreased activity
  • Muscle Atrophy
  • TWEAK
  • Fn14
1. Lynch RL, Konicek BW, McNulty AM, Hanna KR, Lewis JE, Neubauer BL, et al. The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation. Molecular cancer research. 2005;3(3):163-9. 2. Tidball JG. Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology. 2005;98(5):1900-8. 3. Giger JM, Bodell PW, Zeng M, Baldwin KM, Haddad F. Rapid muscle atrophy response to unloading: pretranslational processes involving MHC and actin. Journal of Applied Physiology. 2009;107(4):1204-12. 4. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard J-C, Sassi AH, et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cellular and Molecular Life Sciences. 2014;71(22):4361-71. 5. Radak Z, Sasvari M, Nyakas C, Kaneko T, Tahara S, Ohno H, et al. Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochemistry international. 2001;39(1):33-8. 6. Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature cell biology. 2003;5(2):87-90. 7. Hu G, Zeng W, Xia Y. TWEAK/Fn14 signaling in tumors. Tumor Biology. 2017;39(6):1010428317714624. 8. Kumar A, Bhatnagar S, Paul PK. TWEAK and TRAF6 regulate skeletal muscle atrophy. Current opinion in clinical nutrition and metabolic care. 2012;15(3):233. 9. Dogra C, Hall SL, Wedhas N, Linkhart TA, Kumar A. Fibroblast Growth Factor Inducible 14 (Fn14) Is Required for the Expression of Myogenic Regulatory Factors and Differentiation of Myoblasts into Myotubes EVIDENCE FOR TWEAK-INDEPENDENT FUNCTIONS OF Fn14 DURING MYOGENESIS. Journal of Biological Chemistry. 2007;282(20):15000-10. 10. Dogra C, Changotra H, Mohan S, Kumar A. Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-κB and degradation of MyoD protein. Journal of Biological Chemistry. 2006;281(15):10327-36. 11. Peterson JM, Bakkar N, Guttridge DC. NF-κB signaling in skeletal muscle health and disease. Current topics in developmental biology. 96: Elsevier; 2011. p. 85-119. 12. Kumar A, Bhatnagar S, Mittal A, Glass DJ. TWEAK/Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy. Federation of American Societies for Experimental Biology; 2010. 13. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell metabolism. 2007;6(5):376-85. 14. Sheffield-Moore M, Yeckel C, Volpi E, Wolf S, Morio B, Chinkes D, et al. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. American Journal of Physiology-Endocrinology and Metabolism. 2004;287(3):E513-E22. 15. Cunha TF, Bacurau AV, Moreira JB, Paixão NA, Campos JC, Ferreira JC, et al. Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PloS one. 2012;7(8):e41701. 16. Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PloS one. 2010;5(10):e13307. 17. Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short‐term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of physiology. 2006;575(3):901-11. 18. Malmberg AB, Basbaum AI. Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain. 1998;76(1-2):215-22. 19. Chae C-H, Kim H-T. Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochemistry international. 2009;55(4):208-13. 20. Barone R, Bellafiore M, Leonardi V, Zummo G. Structural analysis of rat patellar tendon in response to resistance and endurance training. Scandinavian journal of medicine & science in sports. 2009;19(6):782-9. 21. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50(3):355-63. 22. Tal M, Bennett GJ. Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain. 1994;57(3):375-82. 23. Hodges P, Holm AK, Hansson T, Holm S. Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine. 2006;31(25):2926-33. 24. Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurgical focus. 2004;16(5):1-7. 25. Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of cachexia, sarcopenia and muscle. 2012;3(3):163-79. 26. Vinciguerra M, Musaro A, Rosenthal N. Regulation of muscle atrophy in aging and disease. Protein metabolism and homeostasis in aging: Springer; 2010. p. 211-33. 27. Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. Journal of molecular medicine. 2008;86(10):1113-26. 28. Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, et al. The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. Journal of Cell Biology. 2010;188(6):833-49. 29. Kazemi A, Jahanshahi E. Effect of Spinal Nerve Ligation on The Expression of Tweak and Fn14 Genes in EDL Mucsle of Wistar Rats After HIT Training. Journal of Applied Exercise Physiology. 2019;15(30):161-74. 30. Tajrishi MM, Sato S, Shin J, Zheng TS, Burkly LC, Kumar A. The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle. Biochemical and biophysical research communications. 2014;446(4):1219-24. 31. Welle S, Totterman S, Thornton C. Effect of age on muscle hypertrophy induced by resistance training. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 1996;51(6):M270-M5. 32. Ribeiro MBT, Guzzoni V, Hord JM, Lopes GN, de Cássia Marqueti R, de Andrade RV, et al. Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats. Scientific reports. 2017;7(1):1-13. 33. Foletta VC, White LJ, Larsen AE, Léger B, Russell AP. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflügers Archiv-European Journal of Physiology. 2011;461(3):325-35. 34. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology-Endocrinology and Metabolism. 2014;307(6):E469-E84. 35. Pomiès P, Blaquière M, Maury J, Mercier J, Gouzi F, Hayot M. Involvement of the FoxO1/MuRF1/Atrogin-1 signaling pathway in the oxidative stress-induced atrophy of cultured chronic obstructive pulmonary disease myotubes. PLoS One. 2016;11(8):e0160092. 36. Vechetti-Junior IJ, Bertaglia RS, Fernandez GJ, de Paula TG, de Souza RW, Moraes LN, et al. Aerobic exercise recovers disuse-induced atrophy through the stimulus of the LRP130/PGC-1α complex in aged rats. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2016;71(5):601-9. 37. Mukai R, Matsui N, Fujikura Y, Matsumoto N, Hou D-X, Kanzaki N, et al. Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice. The Journal of nutritional biochemistry. 2016;31:67-76. 38. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012;151(6):1319-31. 39. Zhang Z, Wang B, Fei A. BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1α signaling in heart failure mice. Archives of medical science: AMS. 2019;15(1):214. 40. Rezaeipour S, Kordi M, Gaeini A, Gharakhanloo R. An Investigation of the Effect of Upper Limb Resistance Training after Lower Limb Immobilization on FoxO3a, MuRF1 and MAFbx Gene Expressions of Soleus Muscle in Trained Rats. Sport Physiology & Management Investigations. 2019;11(4):81-90. 41. Panahi S, Agha-Alinejad H, Gharakhanloo R, Fayazmilani R, Hedayati M, Safarzadeh A, et al. The effect of 4 weeks resistance training on murf1 gene expression and muscle atrophy in diabetic wistar rats. Medical Journal of Tabriz University of Medical Sciences. 2016;38(2):6-13. 42. Schönbauer R, Lichtenauer M, Paar V, Emich M, Fritzer-Szekeres M, Schukro C, et al. Regular Training Increases sTWEAK and Its Decoy Receptor sCD163–Does Training Trigger the sTWEAK/sCD163-Axis to Induce an Anti-Inflammatory Effect? Journal of clinical medicine. 2020;9(6):1899.