نگاهی بر توسعه راکتورهای غشایی بستر سیال در تولید هیدروژن طی فرایند ریفورمینگ گاز طبیعی

نوع مقاله : مروری

نویسندگان

1 دانشجوی گروه مهندسی شیمی، دانشکده انرژی های تجدیدپذیر، دانشگاه صنعتی ارومیه

2 عضو هیئت علمی گروه مهندسی شیمی دانشگاه صنعتی ارومیه

چکیده

به دلیل مشکلات سوخت­های فسیلی، توجه بسیاری معطوف به هیدروژن به عنوان تجدیدپذیر شده است. از طرفی توسعه فرآیندهای غشایی و فناوری های راکتورهای غشایی، باعث توجه بیشتر به امکان تولید هیدروژن با خلوص بالا طی فرایندهای ریفورمینگ شده است. با بررسی تحقیقات انجام شده پیرامون تولید هیدروژن با استفاده از راکتورهای غشایی بستر پرشده و بستر سیال مشخص می‌شود که راکتورهای غشایی بستر پرشده به سطح غشاء بیشتری نیاز دارند بنابراین در این مقاله سعی می‌شود مرور و تحلیلی بر تحقیقات انجام گرفته در زمینه توسعه راکتورهای غشایی بستر سیال برای تولید هیدروژن انجام شود. نتایج بررسی فرآیند ریفورمینگ با بخار آب متان در یک راکتور غشایی بستر سیال، نشان می­دهد که خلوص محصول هیدروژن تا سطح %99/994 امکان­پذیر است. بنابراین تولید هیدروژن با استفاده از فناوری راکتور غشایی بستر سیال که دارای هزینه‌های کمتر و بازدهی بالایی است، می­تواند جایگزین مناسبی برای سوخت‌های فسیلی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of the Development of Fluidized Bed Membrane Reactors in Hydrogen Production via Natural Gas Reforming

نویسندگان [English]

  • Tara Torabi 1
  • Kamran Ghasemzadeh 2
1 Student, Department of Chemical Engineering, Faculty of Renewable Energies, Urmia University of Technology, Urmia
2 Chemical engineering department, Urmia university of technology, Urmia, Iran
چکیده [English]

Due to the problems associated with fossil fuels, much attention has been paid to hydrogen as a renewable energy source. The development of membrane processes and membrane reactor technologies has led to a greater focus on the possibility of producing high-purity hydrogen via reformed processes. Based on research conducted on hydrogen production using fluidized bed membrane reactors and fixed bed membrane reactors, it is evident that fluidized bed membrane reactors require a larger membrane surface area. Therefore, this article reviews and analyzes the research conducted on the development of fluidized bed membrane reactors for hydrogen production. The results of the steam methane reforming process in a fluidized bed membrane reactor show that a hydrogen product purity level of up to 99.994% is achievable. Therefore, hydrogen production using fluidized bed membrane reactor technology, which has lower costs and higher efficiency, can be a suitable substitute for fossil fuels.

کلیدواژه‌ها [English]

  • Hydrogen Production
  • Membrane Technology
  • Fluidized Bed
  • Methane
  • Reforming Process
[1] F. Dawood, M. Anda, G. Shafiullah, "Hydrogen production for energy: An overview", International Journal of Hydrogen Energy, 45(7), pp. 3847-3869, 2020.
[2] I., Dincer, "Green methods for hydrogen production", International journal of hydrogen energy, 37(2), pp. 1954-1971, 2012.
[3] B. a Lee, H. Lim, "Cost‐competitive methane steam reforming in a membrane reactor for H2 production: Technical and economic evaluation with a window of a H2 selectivity" International Journal of Energy Research, 43(4), pp. 1468-1478, 2019.
[4] P., Nikolaidis, A. Poullikkas, "A comparative overview of hydrogen production processes", Renewable and sustainable energy reviews, vol. 67, pp. 597-611, 2017.
[5] B. Anzelmo, J. Wilcox,S. Liguori, "Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions", Journal of Membrane Science, vol. 568, pp. 113-120, 2018.
[6] A. Iulianelli, et al., "Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review", Catalysis Reviews, 58(1), pp. 1-35, 2016.
[7] L.Kaiwen, Y. Bin, Z. Tao, "Economic analysis of hydrogen production from steam reforming process: A literature review", Energy Sources, Part B: Economics, Planning, and Policy, 13(2), pp. 109-115, 2018.
[8] R. Kothari, D. Buddhi, R. Sawhney, "Comparison of environmental and economic aspects of various hydrogen production methods", Renewable and Sustainable Energy Reviews, 12(2), pp. 553-563, 2008.
[9] K. Ghasemzadeh, E. Andalib, A. Basile, "Modelling study of palladium membrane reactor performance during methan steam reforming using CFD method", Chemical Product and Process Modeling, 11(1), pp. 17-21, 2016.
[10]     S. Kumar, J.K. Prajapati, "Hydrogen production by partial oxidation of methane: modeling and simulation", International Journal of Hydrogen Energy, 34(16), pp. 6655-6668, 2009.
[11] M. Halabi, et al., "Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer", Chemical Engineering Journal, 137(3), pp. 568-578, 2008.
[12]     V. Palma, et al., Membrane reactors for H2 and energy production, in Current Trends and Future Developments on (Bio-) Membranes., Elsevier, p. 33-56, 2020.
[13]     J.A. Ritter, A.D. Ebner, "State‐of‐the‐art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries", Separation Science and Technology, 42(6), pp. 1123-1193, 2007.
[14]     L. Meng , T. Tsuru, "Microporous membrane reactors for hydrogen production", Current Opinion in Chemical Engineering, vol. 8, pp. 83-88, 2015.
[15]     T.Y. Amiri, , K. Ghasemzageh, A. Iulianelli, "Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review", Chemical Engineering and Processing-Process Intensification, vol.157, pp. 108148, 2020.
[16]     A. Arratibel, et al., "Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors", Journal of Membrane Science, vol. 550 ,pp. 536-544, 2018.
[17]     F. Gallucci, et al., "Recent advances on membranes and membrane reactors for hydrogen production", Chemical Engineering Science, vol. 92, pp. 40-66, 2013.
[18]     P. Gunjal and V. Ranade, Catalytic reaction engineering, in Industrial Catalytic Processes for Fine and Specialty Chemicals. Elsevier, 2016, pp. 263-314.
[19]     Werther, J., Fluidized‐bed reactors. Ullmann's encyclopedia of industrial chemistry, 2000.
[20]     A. Soomro, S.R. Samo, and A. Hussain, Fluidization in cold flow circulating fluidized bed system, in Energy, Environment and Sustainable Development, Springer, 2012, pp. 161-173.
[21] S. Deshmukh, et al., "Membrane assisted fluidized bed reactors: potentials and hurdles", Chemical Engineering Science, 62(1-2), pp. 416-436, 2007.
[22]     Marra, L., et al., "Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors", Catalysis Today, vol. 236, pp. 23-33, 2014.
[23]     J. Grace, S.S. Elnashaie, C.J. Lim, "Hydrogen production in fluidized beds with in-situ membranes", International Journal of Chemical Reactor Engineering, 3(1), 2005.
[24]     L. Roses, et al., "Comparison between fixed bed and fluidized bed membrane reactor configurations for PEM based micro-cogeneration systems", Chemical engineering journal, 171(3), pp. 1415-1427, 2011.
[25]     A. Helmi, et al., "On concentration polarization in fluidized bed membrane reactors", Chemical Engineering Journal, vol. 332, pp. 464-478, 2018.
[26]     F. Gallucci, M. Van Sintannaland, J. Kuipers, "Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming", International journal of hydrogen energy, 35(13), pp. 7142-7150, 2010.
[27]     L. Roses, et al., "Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor", Chemical engineering journal, vol.222, pp. 307-320, 2013.
[28]     G. Ye, et al., "Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus", International journal of hydrogen energy, 34(11), pp. 4755-4762, 2009.
[29]     A. Mahecha-Botero, et al., "Pure hydrogen generation in a fluidized-bed membrane reactor: experimental findings", Chemical Engineering Science, 63(10), pp. 2752-2762, 2008.
[30]     D. Xie, et al., "Reaction/separation coupled equilibrium modeling of steam methane reforming in fluidized bed membrane reactors", International journal of hydrogen energy, 35(21), pp. 11798-11809, 2010.
[31] A.M. Dehkordi, M. Memari, "Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor", International Journal of hydrogen energy, 34(3), pp. 1275-1291, 2009.
[32]     M. Abashar, K. Alhumaizi, A. Adris, "Investigation of methane–steam reforming in fluidized bed membrane reactors", Chemical Engineering Research and Design, 81(2), pp. 251-258, 2003.
[33]     A. Mahecha-Botero, et al., "Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study", Chemical Engineering Science, 64(16), pp. 3598-3613, 2009.
[34]     J.A. Medrano, et al., "Pd-based metallic supported membranes: High-temperature stability and fluidized bed reactor testing", international journal of hydrogen energy, 41(20), pp. 8706-8718, 2016.
[35]     C.S. Patil, M. van Sint Annaland, J. Kuipers, "Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation", Chemical Engineering Science, 62(11), pp. 2989-3007, 2007.
 
[36]     A. Adris, S. Elnashaie, R. Hughes, "A fluidized bed membrane reactor for the steam reforming of methane" The Canadian Journal of Chemical Engineering, 69(5), pp. 1061-1070, 1991.
[37]     A. Adris, C. Lim, J. Grace, "The fluidized-bed membrane reactor for steam methane reforming: model verification and parametric study", Chemical Engineering Science, 52(10), pp. 1609-1622.
[38]     A.-E.M. Adris, J.R. Grace, "Characteristics of fluidized-bed membrane reactors: scale-up and practical issues", Industrial & engineering chemistry research, 36(11), pp. 4549-4556, 1997.
[39]     K. Chen, et al., "The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system", International Journal of Hydrogen Energy, 45(3), pp. 1615-1628, 2020.
[40]     Y. Chen, , et al., "Hydrogen production in a sorption-enhanced fluidized-bed membrane reactor: operating parameter investigation", Industrial & Engineering Chemistry Research, 53(14), pp. 6230-6242, 2014.
[41]     N. Lu, et al., "Modeling of autothermal reforming of methane in a fluidized bed reactor with perovskite membranes", Chemical Engineering and Processing-Process Intensification, vol.124, pp. 308-318, 2018.
[42] C.S. Patil, M. van Sint Annaland, J.A. Kuipers, "Design of a novel autothermal membrane-assisted fluidized-bed reactor for the production of ultrapure hydrogen from methane", Industrial & engineering chemistry research, 44(25), pp. 9502-9512, 2005.
[43]     F. Gallucci, M. van Sint Annaland, J. Kuipers, "Autothermal reforming of methane with integrated CO 2 capture in a novel fluidized bed membrane reactor. Part 1: experimental demonstration", Topics in catalysis, vol.51, pp. 133-145, 2008.
[44]     A. Mahecha-Botero, et al., "Pure hydrogen generation in a fluidized bed membrane reactor: application of the generalized comprehensive reactor model", Chemical engineering science, 64(17), pp. 3826-3846, 2009.
[45]     Z. Chen, et al., "Experimental studies of pure hydrogen production in a commercialized fluidized-bed membrane reactor with SMR and ATR catalysts", International Journal of Hydrogen Energy, 32(13), pp. 2359-2366, 2007.
[46]     S.T. Oyama, et al., "Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors", International journal of hydrogen energy, 37(13), pp. 10444-10450, 2012.
[47]     M. Abashar, "Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors", International Journal of Hydrogen Energy, 29(8), pp. 799-808, 2004.
[48]     P. Durán, et al., "Pure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes", Chemical Engineering Journal, vol. 370, pp. 772-781, 2019.
[49]     P. Shahkarami, S. Fatemi, "Mathematical modeling and optimization of combined steam and dry reforming of methane process in catalytic fluidized bed membrane reactor", Chemical Engineering Communications, 202(6), pp. 774-786, 2015.