ارزیابی پاسخ لاین‌های نیمه‌خواهری چغندرقند (Beta vulgaris L.) نسبت به تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

کمبود منابع آب و بالطبع آن خشکی در زمره شدیدترین عوامل تنش‌زای محیطی قرار دارد که بر رشد و بهره‌وری محصول چغندرقند تأثیر نامطلوبی می‌گذارد. با این وجود، بهره‌وری آب این گیاه را می‌توان با استفاده از ژنوتیپ‌های متحمل در برابر کمبود آب ارتقا بخشید. در مطالعه حاضر به ارزیابی لاین‌های گرده‌افشان چغندرقند که با هدف ایجاد والد‌های پدری متحمل به خشکی طی یک برنامه به‌نژادی مدون در طول چندین سال انجام شده بود، پرداخته شد. بدین منظور آزمایشی با 20 لاین گرده‌افشان و سه لاین شاهد در قالب طرح بلوک‌های کامل تصادفی در دو محیط آبیاری نرمال و تنش خشکی در سال 1393 با سه تکرار اجرا گردید. بر اساس میزان عملکرد ریشه در شرایط نرمال و تنش خشکی شاخص‌های مختلف تحمل و حساسیت به تنش برآورد شدند که در میان آن‌ها شش شاخص بهره‌وری متوسط، بهره‌وری متوسط ژئومتریک، تحمل به تنش، میانگین هارمونیک، عملکرد و مقاومت به خشکی همبستگی مثبت و قابل ملاحظه‌ای با عملکرد ریشه تحت هر دو شرایط نرمال و تنش داشتند. تجزیه به مؤلفه‌های اصلی عملکرد ریشه در هر دو شرایط و شاخص‌های برآورد شده نشان داد که دو مؤلفه اول در مجموع بیش از 99 درصد تغییرات را تبیین می‌کند. بر اساس ضرایب به‌دست‌آمده از تجزیه به مؤلفه اصلی، مؤلفه اول تحت عنوان مؤلفه پتانسیل عملکرد ریشه و تحمل به خشکی و مؤلفه دوم تحت ‌عنوان مؤلفه حساسیت به خشکی نام‌گذاری شدند. در نهایت بر اساس نتایج حاصله، سه لاین S1– 950077، S1– 950123 و S1– 950116 تحت عنوان متحمل‌ترین لاین‌ها معرفی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the sugar beet (Beta vulgaris L.) half-sib lines response to drought stress

نویسندگان [English]

  • Dariush Taleghani
  • Ali Saremirad
Sugar Beet Seed Institute (SBSI)- Agricultural Research Education and Extension, Karaj, Iran
چکیده [English]

Introduction: Plants face a variety of environmental stresses during their growth and development phase, including biotic and abiotic stress factors. Sugar beet growth and productivity are severely affected by the lack of water resources and drought, which are among the most serious environmental stressors. However, the water productivity of sugar beet can be improved by using tolerant genotypes against water scarcity. A multi-year breeding program evaluated sugar beet pollinator lines to create drought-tolerant parents. The study aimed to improve and select drought-tolerant sugar beet pollinator lines.
Material and methods: In this regard, an experiment was conducted to evaluate the drought tolerance of sugar beet pollinator lines. The experiment was performed in two normal irrigation and drought stress conditions, in 2014. The experiment was conducted in a randomized complete block design in three replications with 20 pollinator lines and three control lines. The root yield was estimated under normal and drought stress conditions, and different stress tolerance and sensitivity indices were calculated based on the results.
Results and discussion: The obtained results showed that normal and drought stress conditions caused different responses in terms of the root yield of the lines at the 1% probability level. A considerable variation was observed among the lines in terms of the trait at the 1% probability level. Genotype-environment interaction also caused a difference in terms of root yield at the 1% probability level. This indicates that the response of lines varies according to different environmental conditions. In other words, the environment causes a change in the yield of the lines from one environment to another. Based on the ranking of the lines under normal condition and drought stress, it can be concluded that drought stress caused a decrease in the root yield of the investigated lines by a certain amount. Additionally, the ranking of the lines changed significantly under drought stress compared to normal condition. This change in the rank of the lines can indicate the presence or absence of genes that are involved in stress tolerance. Therefore, it can be acknowledged that the lines that showed a decrease in root yield under drought stress condition probably carry genes that were inherited from the drought-tolerant parent. The MP, GMP, STI, HM, YI and DI had a significant positive correlation with root yield under both conditions. Principal component analysis (PCA) of root yield in both conditions and estimated indices showed that the first two components together explain more than 99% of the variance. Based on the coefficients obtained from PCA, the first component was named as the root yield potential component and drought tolerance and the second component was named as the drought susceptibility component. Based on the MGIDI index, by applying a selection pressure of 15%, S1-950116 ranked first and control 110, and S1-950077 ranked next as the most ideal genotypes in terms of root yield, both normal and stress conditions and 11 stress tolerance and sensitivity indices.
Conclission: Based on the results of correlation analysis, principal component analysis, and the MGIDI index, the MP, GMP, STI, HM, YI, and DI indices were found to be the most suitable indices for selecting lines with high root yield potential and tolerance in drought stress environments. Among the 20 studied pollinator lines, S1-950077, S1-950123, S1-950116, S1-950074, and S1-950119 had the highest tolerance compared to other lines. These lines had the highest root yield potential under both normal and stress conditions, which could be due to the presence of drought tolerance genes inherited from the tolerant maternal parent (fodder beet 7221). Therefore, these lines can be suggested as the pollinator parents for the production of drought-tolerant hybrids.

کلیدواژه‌ها [English]

  • Fodder beet
  • Pollinator
  • Correlation
  • MGIDI
Abdelaal, K.A., Hafez, Y.M., El-Afry, M.M., Tantawy, D.S. and Alshaal, T. 2018. Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. Environmental Science and Pollution Research, 25(30): 30199-30211.
Akyüz, A. and Ersus, S. 2021. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chemistry, 335: 127673.
Anonymous. 2021. Climatic features of Karaj. Alborz Meteorological Administration, Alborz, Iran.
Bazrafshan, M., Matloubi, F., Mesbah, M. and Joukar, L. 2009. Evaluation of drought tolerance of sugar beet genotypes using drought tolerance indices. Journal of Sugar Beet, 24(2): 35-15. (In Persian).
Beyazgül, M., Kayam, Y. and Engelsman, F. 2000. Estimation methods for crop water requirements in the Gediz Basin of western Turkey. Journal of Hydrology, 229(1-2): 19-26.
Bouslama, M. and Schapaugh, W. 1984. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Science, 24(5): 933-937.
Earl, H.J. and Davis, R.F. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95(3): 688-696.
Elias, E., Salih, A. and Alaily, F. 2001. Cracking patterns in the Vertisols of the Sudan Gezira at the end of dry season. International Agrophysics, 15(3): 151-156.
Farshadfar, E., Poursiahbidi, M.M. and Safavi, S.M. 2013. Assessment of drought tolerance in land races of bread wheat based on resistance/tolerance indices. International Journal of Advanced Biological and Biomedical Research, 1(2): 143-158.
Fernandez, G.C. 1992. Effective selection criteria for assessing plant stress tolerance. Paper presented at the Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16,. Shanhua, Taiwan.
Fischer, R. and Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5): 897-912.
Fischer, R. and Wood, J. 1979. Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research, 30(6): 1001-1020.
Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R., Ricciardi, G. and Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4): 523-531.
Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A. and Abdelaal, K. 2020. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy, 10(5): 630.
Kiskini, A., Vissers, A., Vincken, J.-P., Gruppen, H. and Wierenga, P.A. 2016. Effect of plant age on the quantity and quality of proteins extracted from sugar beet (Beta vulgaris L.) leaves. Journal of Agricultural and Food Chemistry, 64(44): 8305-8314.
Lammens, T., Franssen, M., Scott, E. and Sanders, J. 2012. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass and Bioenergy, 44: 168-181.
Lan, J. 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica, 7(1): 85-87.
Moghaddam, A. and Hadizadeh, M.H. 2002. Response of corn (zea mays L.) Hybrids and their parental lines to drought using different stress tolerance indices. Seed and Plant Improvment Journal, 18(3): 255-272. (In Persian).
Mohammadi, R., Armion, M., Kahrizi, D. and Amri, A. 2012. Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. International Journal of Plant Production, 4(1): 11-24.
Mohammadian, R., Sadeghian, S.Y., Moghaddam, M. and Rahimian, H. 2002. Evaluation of drought tolerance indices in determining sugar beet genotypes under early season drought stress conditions. Sugar Beet, 18(1): 29-49. (In Persian).
Mohseni, M., Mortazavian, S., Ramshini, H. and Foghi, B. 2015. Evaluation of drought tolerance in some wheat genotypes based on selection indices. Iranian Journal of Field Crops Research, 13(3): 524-542. (In Persian).
Mousavi, S., YAZDI, S.B., Naghavi, M., Zali, A., Dashti, H. and Pourshahbazi, A. 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert, 12(1): 165-178.
Nabipour, A., Yazdi Samadi, B., Zali, A.A. and Poustini, K. 2002. Effects of morphological traits and their relations to stress susceptibility index in several wheat genotypes. Biaban, 4(1): 31-47. (In Persian).
Nourmand Moayyed, F. 1997. Study on variation of quantitative traits and their relation to the performance of bread wheat (Triticum aestivum L.) in dry and water conditions and determination of the best indices of drought resistance. University of Tehran, Karaj, Iran. (In Persian).
Ober, E., Johnston, D., Clark, C., Jaggard, K. and Pidgeon, J. 2000. Improving sugar beet drought tolerance. Paper presented at the Comptes-Rendus des Congres de l'Institut International de Recherches. Betteravieres, Belgium.
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B.G. and Diel, M.I. 2019. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agronomy Journal, 111(6): 2961-2969.
Olivoto, T. and Nardino, M. 2021. MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics, 37(10): 1383-1389.
Orazizadeh, M.R., Rajabi, A. and Ahmadi, M. 2016. Selection of drought-tolerant half-sib families in sugar beet. Journal of Sugar Beet, 32(1): 1-12. (In Persian).
Porch, T.G. 2006. Application of stress indices for heat tolerance screening of common bean. Journal of Agronomy and Crop Science, 192(5): 390-394.
Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., Mehrvar, M.R., Asadi, A. and Amini, A. 2021. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre, 45(1): 1-16.
Rauf, S. and Sadaqat, H.A. 2007. Effects of varied water regimes on root length, dry matter partitioning and endogenous plant growth regulators in sunflower (Helianthus annuus L.). Journal of Plant Interactions, 2(1): 41-51.
Richards, R. 1996. Defining selection criteria to improve yield under drought. Plant Growth Regulation, 20(2): 157-166.
Rosielle, A. and Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non‐stress environment 1. Crop Science, 21(6): 943-946.
Sadeghian, S.Y., Fazli, H., Mohammadian, R., Taleghani, D. and Mesbah, M. 2000. Genetic variation for drought stress in sugarbeet. Journal of Sugar Beet Research, 37(3): 55-78. (In Persian).
Sadeghzadeh Hemayati, S., Fathollah Taleghani, D. and Fasahat, P. 2017. Effects of drought stress on quantitative and qualitative characteristics, canopy ground cover and wilting score of sugar beet genotypes. Environmental Stresses in Crop Sciences, 10(3): 363-375. (In Persian).
Saremirad, A., Mostafai, K. and Hosseini, M.S. 2021. Evaluation of Tolerance to Terminal Drought Stress in Sunflower Genotypes (Hellianthus annuus L.). Plant Production Technology, 12(2): 1-18. (In Persian).
Saremirad, A. and Mostafavi, K. 2018. Genetic analysis of important agronomic traits in some of barley (Hordeum vulgare L.) cultivars under normal and drought stressconditions. Cereal Research, 8(3): 397-408. (In Persian).
Saremirad, A. and Mostafavi, K. 2020. Genetic Diversity Study of Sunflower (Helianthus annus L.) Genotypes for Agro-morphological Traits Under Normal and Drought Stress Conditions. Journal of Plant Productions, 43(2): 227-240. (In Persian).
Schneider, K.A., Rosales‐Serna, R., Ibarra‐Perez, F., Cazares‐Enriquez, B., Acosta‐Gallegos, J.A., Ramirez‐Vallejo, P., Wassimi, N. and Kelly, J.D. 1997. Improving common bean performance under drought stress. Crop Science, 37(1): 43-50.
Schneiter, A., Johnson, B. and Henderson, T. 1992. Rooting depth and water use of different sunflower phenotypes. Paper presented at the Proc. Int. Sunflower Conf., 13th. Pisa, Italy.
Sharma, S. 1996. Applied multivariate techniques. John Wiley and Sons, Inc., USA.
Simane, B., Struik, P., Nachit, M. and Peacock, J. 1993. Ontogenetic analysis of yield components and yield stability of durum wheat in water-limited environments. Euphytica, 71(3): 211-219.
Tenorio, A.T., Schreuders, F., Zisopoulos, F., Boom, R. and Van der Goot, A. 2017. Processing concepts for the use of green leaves as raw materials for the food industry. Journal of Cleaner Production, 164: 736-748.
Tomaszewska, J., Bieliński, D., Binczarski, M., Berlowska, J., Dziugan, P., Piotrowski, J., Stanishevsky, A. and Witońska, I. 2018. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances, 8(6): 3161-3177.
United Nations. 2019. World population prospects 2019: Highlights. (Department of Economic and Social Affairs, Population Division). Retrieved from Retrieved from.
Yan, W. and Kang, M.S. 2002. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press.