Development of a tool-changing system for nanofabrication machines

The frequent use of a growing diversity of tools in nanofabrication machines raises the need for a highly reproducible tool-changing system that is capable of working with tools of different weights and moments of inertia. Since the tool-changing system is designed beneficially based on an open, force-paired kinematic coupling, means to apply a holding force are required. The holding force needed is about 40 N in total and has to be applied without heat dissipation or other disturbances. Since variations in the elastic deformation at the contact points of the coupling directly influence the reproducibility of the tool position, the force application needs to be highly reproducible.
An analytical model is developed to determine the force application requirements, taking into consideration elastic deformation and friction. Based on this model, the allowable variation of the holding force in amount and direction, as well as the allowable deviation of the force application point, are determined. Thereby, the resulting influence of the force application on the reproducibility of the position of the tool-center point is intended to be 5 nm or less. Eleven solution principles for force application are developed based on the physical effects of magnetic force, spring force, and weight force. Based on a systematic evaluation, an arrangement of three permanent magnets with flux guide pieces at an angle of 120° to each other has been chosen at the fixed side. On the tool side, ferromagnetic plates are used to close the magnetic circuit. Thereby, the air gap and, thus, the holding force can be adjusted individually for each tool. During the tool change, the magnetic force is switched off by short-circuiting the magnetic flux with an additional rotatory-mounted flux piece, which is driven by a gear motor. The designed prototype will be tested and further optimized within a nanofabrication machine.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung: