Validation of experimental setup for aerostatic bearing simulation

Aerostatic bearings are extensively used in precision engineering applications that require high positional accuracy and low friction motion. In these bearings, externally pressurized gas is fed through a restrictor into the bearing gap. The viscous shear in the gap restricts the flow, thus forming a pressurized film between the bearing and the guide surface. In the development of models and in investigations of, for example, effects of manufacturing errors and porous material permeability properties, characterization of bearing performance is required. The performance is commonly characterized with a measurement setup, either under static or dynamic conditions. In the present study, an experimental setup for the measurement performance of aerostatic bearings is presented. The investigated measurement setup is validated with a comparison to a literature model. The results of the present study include the load capacity, stiffness, air consumption, and pressure distribution of a commercially available axisymmetric graphite thrust bearing. The results show good agreement between the measurements and the model. Thus, the results show corroborative evidence on the usability of the measurement setup in future aerostatic bearing research.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung: