Large-scale flow structures in turbulent Rayleigh-Bénard convection: dynamical origin, formation, and role in material transport

Thermische Konvektion ist der essentielle Mechanismus durch welchen Wärme in vielen natürlichen Strömungen übertragen wird und weist zugleich oftmals eine Hierarchie von verschiedenen Strömungsstrukturen auf. Jedes Umfeld kann dabei über seine eigenen charakteristischen Randbedingungen verfügen, wobei die solare Konvektionszone das wohl bekannteste Beispiel mit ausgeprägter Strukturhierarchie repräsentiert. Die Entstehung Letzterer und die Rolle der involvierten Strömungsmuster bzgl. des materiellen Transports stellen wichtige offene Fragen der Wissenschaft dar.

Die vorliegende Arbeit (1) erweitert unser Verständnis von der Beeinflussung großskaliger Strömungsstrukturen durch verschiedene Randbedingungen und (2) untersucht diese Muster aus der Perspektive materiellen Transports. Zu diesem Zweck wird Rayleigh-Bénard Konvektion - ein Paradigma natürlicher thermischer Konvektion - mittels direkter numerischer Simulationen untersucht.

Das erste wesentliche Ergebnis wird durch eine explorative Studie verschiedener idealisierter mechanischer und thermischer Randbedingungen erreicht. Es wird gezeigt, dass Letztere die Natur der großskaligen Strömungsstrukturen fundamental bestimmen.

Wird eine konstante Wärmestromdichte aufgeprägt, so kann eine allmähliche Aggregation kleinerer Konvektionszellen zu einer die gesamte Domäne füllenden Konvektionsstruktur - welche in Analogie zur astrophysikalischen Motivation als Supergranule bezeichnet wird - für alle zugänglichen Rayleigh- und Prandtl-Zahlen beobachtet werden. Es wird zudem gezeigt, dass schwache Rotation um die vertikale Achse imstande ist, den Aggregationsprozess zu beschränken. Der dynamische Ursprung und die Formierung der Supergranulen werden im Kontext von Instabilitäten und spektralen Kaskaden analysiert.

Das zweite wesentliche Ergebnis wird durch die Analyse der Entwicklung von masselosen Lagrange'schen Partikeln im klassischen, durch konstante Temperaturen angetriebenen Szenario erzielt.

Unüberwachtes maschinelles Lernen wird dazu benutzt, kohärente Regionen zu identifizieren, welche anschließend mit den großskaligen Strömungsstrukturen in Verbindung gebracht und bzgl. ihres Wärmetransportes in verschiedenen Fluiden analysiert werden.

Abschließend wird eine neue evolutionäre Clustering-Methode entwickelt, welche künftig auf die Supergranulenaggregation angewendet werden kann.

Diese Arbeit beschreibt einen neuen Mechanismus der Selbstorganisation von Strömungen und erweitert damit unser Verständnis großskaliger Strömungsstrukturen thermischer Konvektion. Die Einfachheit des untersuchten dynamischen Systems erlaubt eine Übertragung auf verschiedenste natürliche Strömungen sowie deren erfolgreichere Interpretation.

Thermische Konvektion ist der essentielle Mechanismus durch welchen Wärme in vielen natürlichen Strömungen übertragen wird und weist zugleich oftmals eine Hierarchie von verschiedenen Strömungsstrukturen auf. Jedes Umfeld kann dabei über seine eigenen charakteristischen Randbedingungen verfügen, wobei die solare Konvektionszone das wohl bekannteste Beispiel mit ausgeprägter Strukturhierarchie repräsentiert. Die Entstehung Letzterer und die Rolle der involvierten Strömungsmuster bzgl. des materiellen Transports stellen wichtige offene Fragen der Wissenschaft dar.

Die vorliegende Arbeit (1) erweitert unser Verständnis von der Beeinflussung großskaliger Strömungsstrukturen durch verschiedene Randbedingungen und (2) untersucht diese Muster aus der Perspektive materiellen Transports. Zu diesem Zweck wird Rayleigh-Bénard Konvektion -- ein Paradigma natürlicher thermischer Konvektion -- mittels direkter numerischer Simulationen untersucht.

Das erste wesentliche Ergebnis wird durch eine explorative Studie verschiedener idealisierter mechanischer und thermischer Randbedingungen erreicht. Es wird gezeigt, dass Letztere die Natur der großskaligen Strömungsstrukturen fundamental bestimmen.
Wird eine konstante Wärmestromdichte aufgeprägt, so kann eine allmähliche Aggregation kleinerer Konvektionszellen zu einer die gesamte Domäne füllenden Konvektionsstruktur -- welche in Analogie zur astrophysikalischen Motivation als Supergranule bezeichnet wird -- für alle zugänglichen Rayleigh- und Prandtl-Zahlen beobachtet werden. Es wird zudem gezeigt, dass schwache Rotation um die vertikale Achse imstande ist, den Aggregationsprozess zu beschränken. Der dynamische Ursprung und die Formierung der Supergranulen werden im Kontext von Instabilitäten und spektralen Kaskaden analysiert.

Das zweite wesentliche Ergebnis wird durch die Analyse der Entwicklung von masselosen Lagrange'schen Partikeln im klassischen, durch konstante Temperaturen angetriebenen Szenario erzielt.
Unüberwachtes maschinelles Lernen wird dazu benutzt, kohärente Regionen zu identifizieren, welche anschließend mit den großskaligen Strömungsstrukturen in Verbindung gebracht und bzgl. ihres Wärmetransportes in verschiedenen Fluiden analysiert werden.
Abschließend wird eine neue evolutionäre Clustering-Methode entwickelt, welche künftig auf die Supergranulenaggregation angewendet werden kann.

Diese Arbeit beschreibt einen neuen Mechanismus der Selbstorganisation von Strömungen und erweitert damit unser Verständnis großskaliger Strömungsstrukturen thermischer Konvektion. Die Einfachheit des untersuchten dynamischen Systems erlaubt eine Übertragung auf verschiedenste natürliche Strömungen sowie deren erfolgreichere Interpretation.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten