Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Disparidad en daño al ADN, Hsp70 y apoptosis, por UVA en leucocitos ovinos y humanos

Disparity in damage to DNA, hsp70 and apoptosis, by UVA in ovine and human leukocytes



Cómo citar
García-López, D. A., Ortiz-Letechipia, J. ., Bañuelos-Valenzuela, R. ., Reveles-Hernández, R. G. ., Ramírez-Santoyo, R. M., & Sánchez-Rodríguez, S. (2024). Disparidad en daño al ADN, Hsp70 y apoptosis, por UVA en leucocitos ovinos y humanos. Revista MVZ Córdoba, 29(2), e3176. https://doi.org/10.21897/rmvz.3176

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

David Alejandro García-López
Jennifer Ortiz-Letechipia
Rómulo Bañuelos-Valenzuela
Rosa Gabriela Reveles-Hernández
Rosa María Ramírez-Santoyo
Sergio Sánchez-Rodríguez

David Alejandro García-López,

Universidad Autónoma de Zacatecas. Unidad Académica de Ciencias Biológicas. Laboratorio de Biología Celular y Neurobiología. Avenida Preparatoria, Colonia Hidráulica, s/n, C.P. 98068, Zacatecas Zacatecas, México. 


Jennifer Ortiz-Letechipia,

Universidad Autónoma de Zacatecas. Unidad Académica de Ciencias Biológicas. Laboratorio de Biología Celular y Neurobiología. Avenida Preparatoria, Colonia Hidráulica, s/n, C.P. 98068, Zacatecas Zacatecas, México. 


Rómulo Bañuelos-Valenzuela,

Universidad Autónoma de Zacatecas. Unidad Académica de Medicina Veterinaria y Zootecnia. Laboratorio de Biología Celular. El Cordobel, Enrique Estrada, C.P. 98068, Zacatecas Zac. México.


Rosa Gabriela Reveles-Hernández,

Universidad Autónoma de Zacatecas. Unidad Académica de Ciencias Biológicas. Laboratorio de Biología Celular y Neurobiología. Avenida Preparatoria, Colonia Hidráulica, s/n, C.P. 98068, Zacatecas Zacatecas, México


Rosa María Ramírez-Santoyo,

Universidad Autónoma de Zacatecas. Unidad Académica de Ciencias Biológicas. Laboratorio de Biología Celular y Neurobiología. Avenida Preparatoria, Colonia Hidráulica, s/n, C.P. 98068, Zacatecas Zacatecas, México


Sergio Sánchez-Rodríguez,

Universidad Autónoma de Zacatecas. Unidad Académica de Ciencias Biológicas. Laboratorio de Biología Celular y Neurobiología. Avenida Preparatoria, Colonia Hidráulica, s/n, C.P. 98068, Zacatecas Zacatecas, México. 


Objetivo. Determinar viabilidad celular, expresión de proteína Hsp70, degradación del material genético y muerte celular por apoptosis en leucocitos ovinos Katahdin, Dorper y Humanos irradiados in vitro con radiación UVA. Material y métodos. Se utilizó leucocitos, los cuales fueron expuestos in vitro a radiación UVA, para evaluar viabilidad celular, fragmentación de ADN, expresión de proteína Hsp70 y alteraciones morfológicas relacionadas con apoptosis de cada modelo. Resultados. Se encontró una caída en la viabilidad de leucocitos expuestos a radiación UVA, siendo los ovinos los más afectados. Se observó un incremento en la expresión de Hsp70 en los leucocitos humano, Katahdin y Dorper. Se encontró aumento progresivo de la fragmentación de ADN, así como aumento en las alteraciones morfológicas relacionadas con apoptosis conforme aumentó el tiempo de exposición a radiación UVA, siendo el modelo Dorper el más afectado. Conclusiones. La radiación UVA genera estrés en leucocitos ovinos y humanos, observando que los leucocitos humanos son más resistentes, mientras que los ovinos son más susceptibles, principalmente el genotipo Dorper.


Visitas del artículo 112 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Rodríguez de la FAO, Heredia RJA, Heredia RO, Castañeda GME, Rodríguez FLE. El Apocalipsis del Ozono: Efectos Biológicos de la Radiación Ultravioleta. Biología Y Sociedad. 2018; 1(2), 55–63. https://doi.org/10.29105/bys1.2-51
  2. Saucedo M, Sánchez-Rodríguez SH, Aréchiga-Flores CF, Bañuelos-Valenzuela R, López-Luna MA. Efecto de la radiación ultravioleta (UV) en animales domésticos. Revisión. Revista Mex Cienci Pecu. 2019; 10(2):416-432. https://doi.org/10.22319/rmep.v10i2.4648
  3. Hurtado S. Aspectos químicos: La contaminación de la capa de ozono. Semilla científica: Revista Investigación Formativa. 2021; 177-182.
  4. Molina MJ, Rowland FS. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature. 1974; 249(5460):810-812. https://doi.org/10.1038/249810a0
  5. Ballén JB, Mogollón JFP. Radiación ultravioleta. Ciencia y Tecnología Para La Salud Visual y Ocular. 2007; 9:97-104. https://doi.org/10.19052/sv.1520
  6. Morales CM, López-Nevot MA. Efectos de la radiación ultravioleta (UV) en la inducción de mutaciones de p53 en tumores de piel. Oncología. 2006; 29:25-32. https://doi.org/10.4321/S0378-48352006000700003
  7. González-Púmariega M, Tamayo MV, Sánchez-Lamar Á. La radiación ultravioleta. su efecto dañino y consecuencias para la salud humana. Ultraviolet radiation and its incidence in the human health. Theoria. 2009; 18(2):69-80. https://www.ubiobio.cl/miweb/webfile/media/194/v/v18-2/06.pdf
  8. Carrasco-Ríos L. Efecto de la radiación ultravioleta-b en plantas. Idesia (arica). 2009; 27(3):59-76. http://dx.doi.org/10.4067/S0718-34292009000300009
  9. Cadet J, Douki T, Ravanat JL, Di Mascio P. 2009 Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochemical & Photobiological Sciences. 2009; 8(7):903-911. https://doi.org/10.1039/b905343n
  10. Olarte-Saucedo M, García-López DA, Ortiz-Letechipia J, Palafox-Herrera A, Reveles-Hernández RG, López-Luna MA, et al. DNA fragmentation and changes in the expression of Hsp70, Hsp90 and P53 proteins in the skin of BALB/c mice exposed to ultraviolet UV light (UVA, UVB, UVC). Dermatol Rev Mex. 2020; 64(3):255-269. https://dermatologiarevistamexicana.org.mx/article/fragmentacion-de-adn-y-cambios-en-la-expresion-de-las-proteinas-hsp70-hsp90-y-p53-en-la-piel-de-ratones-balb-c-expuestos-a-luz-ultravioleta-uv-uva-uvb-uvc/
  11. Mayer MP. Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences. 2013; 38(10):507-514. https://doi.org/10.1016/j.tibs.2013.08.001
  12. Sarkar S, Roy S. A mini review on heat shock proteins (Hsps): special emphasis on heat shock protein70 (HSP70) BN Seal Journal of Science. 2017; 9(1):130-139.
  13. Roh BH, Kim DH, Cho MK, Park YL, Whang KU. Expression of Heat Shock Protein 70 in Human Skin Cells as a Photoprotective Function after UV Exposure. Annals Dermatology. 2008; 20(4):184-189. https://doi.org/10.5021/ad.2008.20.4.184
  14. Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jäättelä M, et al. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest. 1995; 95(3):926-933. https://doi.org/10.1172/JCI117800
  15. Lennikov A, Kitaichi N, Kase S, Noda K, Horie Y, Nakai A, et al. Induction of heat shock protein 70 ameliorates ultraviolet-induced photokeratitis in mice. Int J Mol Sci. 2013; 14(1):2175-2189. https://doi.org/10.3390/ijms14012175
  16. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biology. 2010; 31(4):363-372. https://doi.org/10.1007/s13277-010-0042-8
  17. Shidham VB, Swami VK. Evaluation of Apoptotic Leukocytes in Peripheral Blood Smears. Arch Pathol Lab Med. 2000; 124(9):1291-1294. https://doi.org/10.5858/2000-124-1291-EOALIP
  18. Wolnicka-Głubisz A, Rijnkels JM, Sarna T, Beijersbergen van Henegouwen GMJ. Apoptosis in leukocytes induced by UVA in the presence of 8-methoxypsoralen, chlorpromazine or 4,6,4′-trimethylangelicin. J Photochem Photobiol B. 2002; 68(2):65-72. https://doi.org/10.1016/s1011-1344(02)00332-9
  19. Kessel D. Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated with Photodynamic Therapy. Photochem Photobiol. 2019; 95(1):119-125. https://doi.org/10.1111/php.12952
  20. Brengues M, Lapierre A, Bourgier C, Pèlegrin A, Özsahin M, Azria D. T lymphocytes to predict radiation-induced late effects in normal tissues. Expert Rev Mol Diagn. 2017; 17(2):119-127. https://doi.org/10.1080/14737159.2017.1271715
  21. Lumniczky K, Candéias SM, Gaipl US, Frey B. Radiation and the Immune System: Current Knowledge and Future Perspectives. Front Immunol. 2018; 8:1933. https://doi.org/10.3389/fimmu.2017.01933
  22. Alvarez Fontanet E. Consecuencias del estrés oxidativo de la piel por radiaciones ultravioleta. Revista Cubana de Investigaciones Biomédicas. 1995; 14:0-10. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03001995000100004
  23. Aubin F. Efectos inmunológicos de las radiaciones ultravioletas y sus implicaciones en dermatología. EMC-Dermatología. 2012; 46(2):1-11. https://doi.org/10.1016/S1761-2896(12)61893-7
  24. OCDE/FAO. OCDE-FAO Perspectivas Agrícolas 2017-2026. OCDE, París.: OCDE; 2017. https://www.fao.org/3/i7465s/i7465s.pdf
  25. INEGI. Encuesta Nacional Agropecuaria 2017. INEGI: México; 2017. https://www.inegi.org.mx/programas/ena/2017/
  26. Chairez FGE, Gutiérrez-Luna R, Ledesma-Rivera RI, Bañuelos-Valenzuela R, Aguilera-Soto JI, Serna-Pérez A. Influencia del sistema de pastoreo con pequeños rumiantes en un agostadero del semiárido Zacatecano. I Vegetación nativa. Téc Pecu Méx. 2006; 44(2):203-217. https://www.redalyc.org/pdf/613/61344206.pdf
  27. Castanedo-Cázares JP, Torres-Álvarez B, Portales-González B, Martínez-Rosales K, Hernández Blanco D. Análisis de la radiación solar ultravioleta acumulada en México. Rev Med Inst Mex Seguro Soc. 2016; 54(1):26-31. https://www.redalyc.org/pdf/4577/457745148005.pdf
  28. Quiñonez-Choquecota J. Investigación experimental de un calentador solar de aire de doble flujo de convección natural de alta eficiencia. Revista de Investigaciones Altoandinas. 2019; 21:274-282. http://dx.doi.org/10.18271/ria.2019.504
  29. Salazar G, Suarez H, Acosta D, Cadena C, Adamo J, Castillo J, et al. Medición de radiación eritémica en sitios de altura de la provincia de salta. Avances en Energías Renovables y Medio Ambiente-AVERMA. 2013; 17:119-127. http://asades.org.ar/revistaaverma/Medicion%20de%20radiacion%20eritemica%20en%20sitios%20de%20altura%20de%20la%20provincia%20de%20salta.%20Suarez%20H.,%20Salazar%20[2013%20-%20Tema%2011].pdf
  30. Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2001. https://doi.org/10.1002/0471142735.ima03bs21
  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72(1):248-254. https://doi.org/10.1006/abio.1976.9999
  32. He F. Laemmli-SDS-PAGE. Bio-protocol. 2011; e80-e80. https://doi.org/10.21769/BioProtoc.80
  33. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979; 76(9):4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  34. Cornejo A, Serrato B, Rendón MG. Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos. Primera ed. Mexico: Secretaría de Medio Ambiente y Recursos Naturales (Semarnat); 2014.
  35. Sayed AE-DH. UVA-Induced DNA Damage and Apoptosis in Red Blood Cells of the African Catfish Clarias gariepinus. Photochemistry and Photobiology. 2018; 94(1):158-164. https://doi.org/10.1111/php.12818
  36. Multhoff G, Pockley AG, Schmid TE, Schilling D. The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Letters. 2015; 368(2):179-184. https://doi.org/10.1016/j.canlet.2015.02.013
  37. Matsuda M, Hoshino T, Yamashita Y, Tanaka K-i, Maji D, Sato K, et al. Prevention of UVB radiation-induced epidermal damage by expression of heat shock protein 70. J Biol Chem. 2010; 285(8):5848-5858. https://doi.org/10.1074/jbc.M109.063453
  38. Bonaventura R, Poma V, Russo R, Zito F, Matranga V. Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos. Marine Biology. 2006; 149(1):79-86. https://doi.org/10.1007/s00227-005-0213-0
  39. Martinez-Fernandez L, Banyasz A, Esposito L, Markovitsi D, Improta R. UV-induced damage to DNA: effect of cytosine methylation on pyrimidine dimerization. Signal Transduct Target Therapy. 2017; 2(1):1-7. https://doi.org/10.1038/sigtrans.2017.21
  40. Viada-Pupo E, Gómez-Robles L, Campaña-Marrero IR. Estrés oxidativo. Correo Científico Médico. 2017; 21(1):171-186. http://scielo.sld.cu/pdf/ccm/v21n1/ccm14117.pdf
  41. Yoo E, Rook A, Elenitsas R, Gasparro F, Vowels B. Apoptosis Induction by Ultraviolet Light A and Photochemotherapy in Cutaneous T-Cell Lymphoma: Relevance to Mechanism of Therapeutic Action. Journal of Investigative Dermatology. 1996; 107(2):235-242. https://doi.org/10.1111/1523-1747.ep12329711
  42. Grbatinić I, Milošević NT. Incipient UV-Induced Structural Changes in Neutrophil Granulocytes: Morphometric and Texture Analysis of Two-Dimensional Digital Images. Microscopy and Microanalysis, 2016; 22(2):387-393. https://doi.org/10.1017/S1431927616000532

Sistema OJS 3.4.0.3 - Metabiblioteca |