International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 10 (October 2019), Pages: 73-82

----------------------------------------------

 Original Research Paper

 Title: New maximum power point tracking for wind turbines

 Author(s): Alnufaie Lafi *

 Affiliation(s):

 Department of Electrical Engineering, College of Engineering, Shaqra University, Shaqraa, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2453-2637

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.10.012

 Abstract:

In this paper, we deal with the maximum power point tracking problem for wind generator in a standalone installation. The aim is to develop a new algorithm to get the value of optimal power. So, we intend to use fuzzy logic to exploit its robustness in presence on not certainties and its simplicity of design. In order to improve human expertise, we aim to use two evolutionary algorithms as Particle Swarm Optimization and Genetic Algorithms. Lots of simulation results are introduced to show the obtained improvement. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Maximum power point tracking, Fuzzy controller, Wind speed,Wind energy 

 Article History: Received 25 April 2019, Received in revised form 6 August 2019, Accepted 7 August 2019

 Acknowledgement:

No Acknowledgement.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Lafi A (2019). New maximum power point tracking for wind turbines. International Journal of Advanced and Applied Sciences, 6(10): 73-82

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 

----------------------------------------------

 References (20) 

  1. Ahmed NA, Miyatake M, and Al-Othman AK (2008). Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems. Energy Conversion and Management, 49(10): 2711-2719. https://doi.org/10.1016/j.enconman.2008.04.005   [Google Scholar]
  2. Belmokhtar K, Doumbia ML, and Agbossou K (2014). Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy, 76: 679-693. https://doi.org/10.1016/j.energy.2014.08.066   [Google Scholar]
  3. Camblong H, de Alegria IM, Rodriguez M, and Abad G (2006). Experimental evaluation of wind turbines maximum power point tracking controllers. Energy Conversion and Management, 47(18-19): 2846-2858. https://doi.org/10.1016/j.enconman.2006.03.033   [Google Scholar]
  4. Damousis IG, Satsios KJ, Labridis DP, and Dokopoulos PS (2002). Combined fuzzy logic and genetic algorithm techniques-Application to an electromagnetic field problem. Fuzzy Sets and Systems, 129(3): 371-386. https://doi.org/10.1016/S0165-0114(01)00137-3   [Google Scholar]
  5. Eberhart R and Kennedy J (1995). Particle swarm optimization. In the Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 4: 1942-1948. https://doi.org/10.1109/ICNN.1995.488968   [Google Scholar]
  6. Eltamaly AM and Farh HM (2013). Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, 97: 144-150. https://doi.org/10.1016/j.epsr.2013.01.001   [Google Scholar]
  7. Hui J and Bakhshai A (2008). A new adaptive control algorithm for maximum power point tracking for wind energy conversion systems. In the 2008 IEEE Power Electronics Specialists Conference, IEEE, Rhodes, Greece: 4003-4007. https://doi.org/10.1109/PESC.2008.4592580   [Google Scholar]
  8. Kazmi SMR, Goto H, Guo HJ, and Ichinokura O (2010). Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system. In the 2010 IEEE Energy Conversion Congress and Exposition, IEEE, Atlanta, USA: 4075-4082. https://doi.org/10.1109/ECCE.2010.5617747   [Google Scholar]
  9. Kumar D and Chatterjee K (2016). A review of conventional and advanced MPPT algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 55: 957-970. https://doi.org/10.1016/j.rser.2015.11.013   [Google Scholar]
  10. Lin WM, Hong CM, and Cheng FS (2010). Fuzzy neural network output maximization control for sensorless wind energy conversion system. Energy, 35(2): 592-601. https://doi.org/10.1016/j.energy.2009.10.030   [Google Scholar]
  11. Meghni B, Dib D, and Azar AT (2017). A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Computing and Applications, 28(6): 1417-1434. https://doi.org/10.1007/s00521-015-2161-z   [Google Scholar]
  12. Moor GD and Beukes HJ (2004). Maximum power point trackers for wind turbines. In the 2004 IEEE 35th Annual Power Electronics Specialists Conference, IEEE, Aachen, Germany, 3: 2044-2049. https://doi.org/10.1109/PESC.2004.1355432   [Google Scholar]
  13. Ram JP, Rajasekar N, and Miyatake M (2017). Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 73: 1138-1159. https://doi.org/10.1016/j.rser.2017.02.009   [Google Scholar]
  14. Thongam JS and Ouhrouche M (2011). MPPT control methods in wind energy conversion systems. In: Carriveau R (Ed.), Fundamental and advanced topics in wind power: 339-360. BoD–Books on Demand, Norderstedt, Germany.   [Google Scholar]
  15. Varzaneh SG, Rastegar H, and Gharehpetian GB (2014). A new three-mode maximum power point tracking algorithm for doubly fed induction generator based wind energy conversion system. Electric Power Components and Systems, 42(1): 45-59. https://doi.org/10.1080/15325008.2013.846437   [Google Scholar]
  16. Xia Y, Ahmed KH, and Williams BW (2011). A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system. IEEE Transactions on Power Electronics, 26(12): 3609-3620. https://doi.org/10.1109/TPEL.2011.2162251   [Google Scholar]
  17. Yaoqin J, Zhongqing Y, and Binggang C (2002). A new maximum power point tracking control scheme for wind generation. In the International Conference on Power System Technology, IEEE, Kunming, China, 1: 144-148. https://doi.org/10.1109/ICPST.2002.1053521   [Google Scholar]
  18. Zadah LA (1965). Fuzzy Sets. Information and Control Volume 8(3): 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X   [Google Scholar]
  19. Zeng Q, Chang L, and Shao R (2008). Fuzzy-logic-based maximum power point tracking strategy for PMSG variable-speed wind turbine generation systems. In the 2008 Canadian Conference on Electrical and Computer Engineering, IEEE, Niagara Falls, Canada: 405- 410. https://doi.org/10.1109/CCECE.2008.4564566   [Google Scholar]
  20. Zou Y, Elbuluk M, and Sozer Y (2011). Stability analysis of maximum power point tracking (MPPT) method in wind power systems. In the 2011 IEEE Industry Applications Society Annual Meeting, IEEE, Orlando, USA: 1-8. https://doi.org/10.1109/IAS.2011.6074308   [Google Scholar]