skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling of friction-induced deformation and microstructures.

Technical Report ·
DOI:https://doi.org/10.2172/902880· OSTI ID:902880

Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the mechanical response of wear surfaces. Coatings are often required to mitigate friction and wear. Amongst other factors, plastic deformation of the substrate determines the coating-substrate interface reliability. Finite element modeling has been applied to predict the plastic deformation for the specific case of diamond-like carbon (DLC) coated Ni alloy substrates.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
902880
Report Number(s):
SAND2006-7028; TRN: US200720%%239
Country of Publication:
United States
Language:
English