Mineralogical and petrographical characterization of the Vizcaya, Octubrina and Gabi veins from the Zaruma-Portovelo gold epithermal ore deposit (Ecuador)

Authors

  • Edgar Berrezueta Instituto Geológico y Minero de España, CSIC
  • Berta Ordóñez-Casado Instituto Geológico y Minero de España, CSIC
  • Catherine Espinoza-Santos Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University
  • Johnny Loayza-Ramírez Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University
  • Paul Carrión-Mero Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University
  • Fernando Morante-Carballo Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University - Facultad de Ciencias Naturales y Matemáticas (FCNM), ESPOL Polytechnic University - Geo-Recursos y Aplicaciones GIGA, ESPOL Polytechnic University
  • Wilson Bonilla Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University

DOI:

https://doi.org/10.21701/bolgeomin.132.4.004

Keywords:

ore petrography, ore minerals, epithermal

Abstract


Ore petrography through optical microscopy and electron microprobe analysis (EMPA) can be applied to the characterization of ore deposits, allowing accurate and representative information on the evolutionary sequences of mineral phases (paragenesis). In this studywork mineralogical and petrographical characteristics of three veins (Vizcaya, Octubrina and Gabi) of the Zaruma-Portovelo hydrothermal deposit (Ecuador) have been studied. The main objective of this research was to identify and quantify the ore minerals present in the polished section studied by optical microscopy and EPM, and to correlate the data obtained with the previously defined paragenetic evolution. In addition, the systematics we describe is revealed as an appropriate method for the characterization and basic knowledge of the mineralized areas. The mineralogical characterization was completed by scanning electron microscopy, optical image analysis and X-ray diffraction. The results have provided us with allowed: i) the identification and quantification of gold, sphalerite, chalcopyrite, galena, pyrite, hematite, chalcocite, covellite and tetrahedrite in the polished sections of the veins studied; ii) the characterization of the mineral associations as a complement to the previous studies of the mineral paragenesis of the deposit and indicative in the geometallurgy of the deposit. The mineralogical and ore petrographical characterization of the ores represent the basis of knowledge to understand the characterization of the mineral deposit and, in addition, improve the processing of the mineral of interest.

Downloads

Download data is not yet available.

References

Albinson, T., Norman, D. I., Cole, D. and Chomiak, B. 2001. Controls on formation of low-sulfidation epithermal deposits in Mexico. In: Albinson, T. and Nelson, C.E. (eds.), Constraints from fluid inclusion and stable isotope data, in New mines and discoveries in Mexico and Central America, SEG, USA, 32.

Banda, R., Vikentyev, I.V. and Nosik, L.P. 2005. Sulfur isotopic composition of the Vizcaya and Nikol veins, Portovelo Zaruma deposit, Ecuador. Doklady Earth Sciences, 405 A (9), 1388-1392.

Berrezueta, E., Ordóñez-Casado, B., Bonilla, W., Banda, R., Castroviejo, R., Carrión, P. and Puglla, S. 2016. Ore Petrography Using Optical Image Anal-ysis: Application to Zaruma-Portovelo Deposit (Ecuador). Geosciences, 6(4), 30. https://doi.org/10.3390/geosciences6020030

Billingsley, P. 1926. Geology of the Zaruma gold district of Ecuador. American Institute of Mining and Metallurgical Engineering, 74(1601), 255-275.

Bonilla, W. 1996. Vizcaya de Ecuador: Historia de una veta aurífera. Revista Latino Minería, 21, 67-75.

Bonilla, W. 2002. Geocronología y Eventos de Brechificación de la Veta Polimetálica Vizcaya, suroeste de Ecuador. VI Congreso de Mineralogía y Metalogenia. Universidad de Buenos Aires, Argentina, 35-39.

Bonilla, W. 2010. Metalogenia del distrito minero Zaruma- Portovelo, República del Ecuador, Tesis Doctoral, Universidad de Buenos Aires, Argentina, 218 págs.

Castroviejo, R. and Berrezueta, E. 2009. Reconocimiento automatizado de menas metálicas mediante análisis digital de imagen: un apoyo al proceso mineralúrgico. II: criterios metalogenéticos discriminantes. Revista de Metalurgia, 45 (6), 439-456. https://doi.org/10.3989/revmetalm.0923

Castroviejo, R., Chacón, E., Múzquix, C. and Tarquini, S. 1999. A preliminary image analysis characterization of massive sulphide ore from SW Iberian Pyrite Belt (Spain). Geovision 99, International Symposium on Imaging Applications in Geology, Liège, Belgium, 37-40.

Chiaradia, M., Fontbote, L. and Beate, B. 2004. Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineralium Deposita, 39 (2), 204-222. https://doi.org/10.1007/s00126-003-0397-5

Chopped, A., Marion, P., Royer, J., Taza, R., Bouzahzah, H. and Benzaazoua, M. 2019. Automated sulfides quantification by multispectral optical microscopy. Minerals Engineering, 131, 38-50. https://doi.org/10.1016/j.mineng.2018.11.005

Craig, J.R. and Vaughan, D.J. 1994. Ore microscopy and ore petrography. New York: 2da Edición, Wiley, 424 págs.

Criddle, A.J. 1990. The reflected-light polarizing microscope and microscope-spectrophotometer. Advanced Microscopic Studies of Ore minerals. Short Course Handbook, 17, 1-36.

Echavarría, L., Schalamuck, I. and Etcheverry, R.O. 2005. Geologic and tectonic setting of Deseado Massif epithermal deposits, Argentina, based on El Dorado-Monserrat. Journal of South American Earth Sciences, 19 (4), 415-432. https://doi.org/10.1016/j.jsames.2005.06.005

Einaudi, M., Hedenquist, J.W. and Inan, E.E. 2005. Sulfidation State of Fluids in Active and Extinct Hydrothermal Systems: Transitions from Porphyry to Epithermal Environments. In: F. S. Simmons, I. Graham (eds.), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth, SEG, USA, 50.

Fontaine, F., Wilcock, W., Foustoukos, D. and Butterfield, D. 2009. A Si-Cl geothermobarometer for the reaction zone of high-temperature, basaltic-hosted mid-ocean ridge hydrothermal systems. Geochemistry, Geophysics, Geosystems, 10 (5), 1-9. https://doi.org/10.1029/2009GC002407

Fournier, R.O. 1999. Hydrothermal Processes Related to Movement of Fluid From Plastic into Brittle Rock in the Magmatic-Epithermal Environment. Economic Geology, 94 (8), 1193-1211. https://doi.org/10.2113/gsecongeo.94.8.1193

Gao, S., Xu, H., Zhang, D., Shao, H. and Quan, S. 2014. Ore petrography and chemistry of the tellurides from the Dongping gold deposit, Hebei Province, China. Ore Geology Reviews, 64, 23-34. https://doi.org/10.1016/j.oregeorev.2014.06.010

Gemmell, J.B., Simmons, S.F. and Zantop, H. 1988. The Santo Nino silver-lead-zinc vein, Fresnillo District, Zacatecas, Mexico; Part I, Structure, vein stratigraphy, https://doi.org/10.2113/gsecongeo.83.8.1597

and mineralogy. Economic Geology, 83 (8), 1597-1618.

Heald, P., Hayba, D.O. and Foley, N.K. 1987. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Economic Geology, 82, 1-26. https://doi.org/10.2113/gsecongeo.82.1.1

Hedenquist, J. 2001. Types of sulfide-rich epithermal deposits, and their affiliation to porphyry systems: Lepanto-Victoria-Far Southeast deposits, Philippines, as examples. ProExplo Congreso, Lima, Perú, 24-28.

Hedenquist, J., Arribas, A. and Urien-González, F. 2000. Exploration for epithermal gold deposits. In: Hagemann, S.G., Brown, P.E. (eds.), Gold in 2000: Society of Economic Geologist, Review in Economic Geology, Colorado, USA, 245-277 https://doi.org/10.5382/Rev.13.07

Honeyands, T., Manuel, J., Matthews, L., O'Dea, D., Pinson, D., Leedham, J. and Donskoi, E. 2019. Comparison of the Mineralogy of Iron Ore Sinters Using a Range of Techniques. Minerals, 9(6), 333. https://doi.org/10.3390/min9060333

Hrstka, T., Gottlieb, P., Skala, R., Breiter, K. and Motl, D. 2018. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of Geosciences, 63(1), 47-63. https://doi.org/10.3190/jgeosci.250

John, D.A., Garside, L.J., and Wallace, A.R. 1999. Magmatic and tectonic setting of late Cenozoic epithermal gold-silver deposits in northern Nevada, with an emphasis on the Pah Rah and Virginia Ranges and the northern Nevada rift. In: Kizis, J.A.Jr., (eds). Low-sulfidation gold deposits in northern Nevada. Spring Field Trip Guidebook, Special Publication No. 29: Reno, Geological Society of Nevada, USA, p. 64-158.

Kay, S.M., Mpodozis, C. and Coira B. 1999. Neogene magmatism, tectonism and mineral deposits of the Central Andes (22 to 33 S latitude). In: Skinner B.J. (ed.), Geology and ore deposits of the Central Andes. SEG, USA, 27-59. https://doi.org/10.5382/SP.07.02

Kehl, G. 1954. Fundamentos de la Práctica Metalográfica. 3ra. Edición, Editorial Aguilar, España.

Köse, C., Alp, I. and Ikibas, C. 2012. Statistical methods for segmentation and quantification of minerals in ore microscopy. Minerals Engineering, 30, 19-32. https://doi.org/10.1016/j.mineng.2012.01.008

Leroy, S. and Pirard, E. 2019. Mineral recognition of single particles in ore slurry samples by means of multispectral image processing. Minerals Engineering, 132, 228-237. https://doi.org/10.1016/j.mineng.2018.12.009

Litherland, M. and Aspden, J. 1992. Terrane-boundary reactivation: A control on the evolution of the Northern Andes. Journal of South American Earth Sciences, 5(1), 71-76. https://doi.org/10.1016/0895-9811(92)90060-C

Meyer, C. and Hemley, J.J. 1967. Wall rock alteration. In: Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York-London, 166-235.

Paladines, A. and Rosero, G. 1996. Zonificación mineralógica del Ecuador. Láser, Quito, 146 pp.

Pearson, M.F., Clark, K.F. and Porter, E.W. 1988. Mineralogy, fluid characteristics, and silver distribution at Real de Angeles, Zacatecas, Mexico. Economic Geology, 83, 1737-1759. https://doi.org/10.2113/gsecongeo.83.8.1737

Ramdohr, P. 1969. The ore minerals and their inter growths. Pergamon, New York, 1192 pp. https://doi.org/10.1016/B978-0-08-011635-8.50014-0

Reeves, E., Seewald, J., Saccocia, P., Bach, W., Craddock, P.R., Shankse, W. and Rosner, M. 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta, 75 (4), 1088-1123. https://doi.org/10.1016/j.gca.2010.11.008

Rusk, B.G., Reed, M.H. and Dilles, J.H. 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103 (2), 307-334. https://doi.org/10.2113/gsecongeo.103.2.307

Simmons, S., White, N.C. and John, D. A. 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. In: Hedenquist, J.W.; Thompson, J.F.H.; Goldfarb, R.J.; Richards, J. P. (eds.). Economic Geology One Hundredth Anniversary Volume: 1905-2005, Society of Economic Geologists, Littleton, CO, USA, p. 485-522. https://doi.org/10.5382/AV100.16

Song, G., Cook, N.J., Wang, L., Quin, K., Ciobanu, C.L. and Li, G. 2019. Gold behavior in intermediate sulfidation epithermal systems: A case study from the Zhengguang gold deposit, Heilongjiang Province, NE-China. Ore Geology Reviews, 106, 446-462. https://doi.org/10.1016/j.oregeorev.2019.02.001

Spencer, R.M., Montenegro, J.L. Gaibor, A., Pérez, E.P., Mantilla, G., Viera, F. and Spencer, C.E. 2002. The Portovelo-Zaruma mining camp, SW Ecuador: porphyry and epithermal environments. SEG Newsletter, 49(1), 8-14. https://doi.org/10.5382/SEGnews.2002-49.fea

Surour, A.A., Bakhsh, R.A. and El-Nisr, S.A. 2014. Ore microscopic characterization of mineralized rocks at the Bi'r Tawilah gold prospect, Saudi Arabia. Journal of Microscopy and Ultrastructure, 2(1), 41-55. https://doi.org/10.1016/j.jmau.2014.02.002

Van Thournout, F., Salemink, J., Valenzuela, G., Merlyn, M., Boven, A. and Muchez, P. 1996. Portovelo: a volcanic- hosted epithermal vein-system in Ecuador, South American. Mineralium Deposita, 31(4), 269-276. https://doi.org/10.1007/BF02280791

Vikentyev, I., Banda, R., Tsepin, A., Prokofiev, V. and Vikentyev, O. 2005. Mineralogy and formation conditions of Portovelo-Zaruma gold-sulphide vein deposit, Ecuador. Geochemistry, Mineralogy and Petrology, 43, 148-154.

Von Damm, K.L. 2004. Evolution of the Hydrothermal System at East Pacific Rise 9° 50' N: Geochemical Evidence for Changes in the Upper Oceanic Crust. In: C.R German, J. Lin, L.M. Parson (eds.), Mid Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, AGU, Washington, D. C., 285-304. https://doi.org/10.1029/148GM12

Wang, L., Qin, K., Song, G. and Li, G. 2019. A review of intermediate sulfidation epithermal deposits and subclassifications. Ore Geology Reviews, 107, 434-456. https://doi.org/10.1016/j.oregeorev.2019.02.023

Whitney, D. and Evans, B. 2010. Abbreviations for Names of Rock-Forming Minerals. American Minerals https://doi.org/10.2138/am.2010.3371

Downloads

Published

2021-12-30

How to Cite

Berrezueta, E., Ordóñez-Casado, B., Espinoza-Santos, C., Loayza-Ramírez, J., Carrión-Mero, P., Morante-Carballo, F. ., & Bonilla, W. (2021). Mineralogical and petrographical characterization of the Vizcaya, Octubrina and Gabi veins from the Zaruma-Portovelo gold epithermal ore deposit (Ecuador). Boletín Geológico Y Minero, 132(4), 421–437. https://doi.org/10.21701/bolgeomin.132.4.004

Issue

Section

Articles