Adsorption water vapor characteristics on modified silica gel for desalination application

نوع المستند : المقالة الأصلية

المؤلفون

1 Mechanical Department, Faculty of Technology and Education, Sohag University, Sohag, 82524, Egypt

2 Physics Department, Faculty of Science, Sohag University, 82524- Sohag, Egypt

3 Mechanical Engineering Department, Tabbin Institute for Metallurgical Studies, Cairo, 11912, Egypt

المستخلص

Energy, freshwater, and the environment are interrelated factors that permeate all our activities on the earth. They have become the most important and popular topics in research fields nowadays. This paper studies improving the performance of the adsorption desalination system by improving a commercial silica gel as an adsorbent. Acid treatment has been used to activation for the silica gel. Then, a composite adsorbent is prepared chemically using silica gel as a host matrix and impregnated in CaCl2 salt hydrate. Water vapor adsorption isotherm and kinetics are investigated for raw, treated, and composite silica gel. The Dubinin-Astakhov (D-A) and linear driving force models (LDF) have fitted experimental isotherm and kinetic results. The system is driven by renewable energy such as solar energy. The results illustrated that the silica gel/CaCl2 achieved water uptake (0.95 kgH2O/kg). It is also observed that the composite silica gel based-adsorption desalination cycle provides specific daily water production of 70 % higher than the raw silica gel-based adsorption desalination cycle.

الكلمات الرئيسية

الموضوعات الرئيسية


SJYR stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alsaman, A. S., Askalany, A. A., Harby, K., & Ahmed. M. S. (2017). Performance evaluation of a solar-driven adsorption desalination-cooling system. Energy 128, 196–207.
Aristov, Y. I., Tokarev, M. M., Restuccia, G., & Cacciola, G. (1996). Selective water sorbents for multiple applications, 2. CaCl2 confined in micropores of silica gel: sorption properties. React. Kinet. Catal. L.59, 335-342.
Chua, H. T., Ng, K. C., Chakraborty, A., Oo, N. M., & Othman, M. A. (2002). Adsorption characteristics of silica gel + water systems. J. Chem. Eng. Data. 47, 1177-1181.
Goldsworthy, M. J. (2014). Measurements of water vapour sorption isotherms for RD silica gel, AQSOA-Z01, AQSOA-Z02, AQSOA-Z05 and CECA zeolite 3A. Microporous Mesoporous Mater. 196, 59-67.
Gordeeva, L. G., Mrowiec-Bialon, J., Jarzebskib, A. B., Lachowski, A. L., Malinowski, J. J., & Aristov, Y. L. (1999). Selective water sorbents for multiple applications, 8. Sorption properties of CaCl2-SiO2 sol-gel composites. React. Kinet. Catal. L. 66, 113-120.
Gordeeva, L. G., Restuccia, G., Cacciola, G., & Aristov, Y. I. (1998). Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. React. Kinet. Catal. L. 63, 81-88.
Mitra, S., Kumar, P., Srinivasan, K., & Dutta, P. (2015). Performance evaluation of a two stage silica gel-water adsorption based cooling cum desalination system. Int. J. Refrig. 58, 186-198.
Mrowiec-Białon, J., Lachowski, A. I., Jarze, A. B.¸ Gordeeva, L. G., & Aristov, Y. I. (1999). SiO2–LiBr Nanocomposite Sol–Gel Adsorbents of Water Vapor: Preparation and Properties. J. Colloid Interface Sci. 218, 500–503.
Ng, K. C., Chua, H. T., Chung, C. Y., Loke, C. H., Kashiwagi, T., Akisawa, A., & Saha, B. B. (2001). Experimental investigation of silica gel-water adsorption isotherm characteristics. Appl. Therm. Eng. 21, 1631-1642.
Ng, K. C., Thu, K., Chakraborty, A., Saha, B., & Chun, W. (2009). Solar-assisted dual effect adsorption cycle for the production of cooling effect and potable water. Int. J. Low Carbon Technol. 4, 61-67.
Ng, K. C., Thu, K., Kim, Y. (2011). Solar-assisted adsorption cycle for the production of cooling effect and potable water, 2nd European Conference on Polygeneration – 30th March-1st April, 2011– Tarragona, Spain,2011.
Ng, K. C., Thu, K., Kim, Y., Chakraborty, A., & Amy, G. (2013). Adsorption desalination: An emerging low-cost thermal desalination method, Desalination 308, 161–179.
Ng, K.C., Saha, B. B., Chakraborty, A., & Koyama, S. (2008).Adsorption desalination quenches global thirst. Heat Transfer. Eng. 29,845–848.
Rezk, H., Alsaman, A. S., Al-Dhaifallahd, M., Askalany, A. A., Abdelkareem, M. A., & Nassef, A. M. (2019). Identifying optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via modern optimization. Sol. Energy 181, 475–489.
Thu, K., Chakraborty, A., Saha, B. B., & Ng, K. C. (2013). Thermo-physical properties of silica gel for adsorption desalination cycle. Appl. Therm. Eng. 50, 1596–1602.
Thu, K., Kim, Y., Amy, G., Chun, W. G., & Ng, K. C. (2013). A hybrid multi-effect distillation and adsorption cycle, Appl. Energy 104, 810–821.
Thu, K., Kim, Y., Amy, G., Chun, W. G., & Ng, K. C. (2014). A synergetic hybridization of adsorption cycle with the multi-effect distillation (MED). Appl. Therm. Eng. 62, 245–255.
Xia, Z. Z., Chen, C. J., Kiplagat, J. K., Wang, R. Z., & Hu, J. Q. (2008). Adsorption equilibrium of water on silica gel. J. Chem. Eng. Data 53, 2462-2465.