Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 3, 1888 - 1901, 01.09.2023
https://doi.org/10.21597/jist.1180016

Abstract

Project Number

2020-PT2-002 and TEYDEP 2200261

References

  • Ahmadpour A., Do, DD,. (1996). The preparation of active carbons from coal by chemical and physical activation.Carbon, 34(4), 471-479.
  • Ahmadpour, A., King, B. A., Do, DD,. (1998). Comparison of equilibria and kinetics of high surface area activated carbon produced from different precursors and by different chemical treatments. Industrial & Engineering Chemistry Research, 37(4), 1329-1334.
  • Altay, B. N., Aksoy, B., Banerjee, D., Maddipatla, D., Fleming, P. D., Bolduc, M., Demir, M., (2021). Lignin-derived carbon-coated functional paper for printed electronics. Acs Applied Electronic Materials, 3(9), 3904-3914.
  • Altinci, O. C., Demir, M., (2020). Beyond conventional activating methods, a green approach for the synthesis of biocarbon and its supercapacitor electrode performance. Energy & Fuels, 34(6), 7658-7665.
  • Ashourirad, B., Demir, M., Smith, R. A., Gupta, R. B., El-Kaderi, H. M., (2018). Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. Rsc Advances, 8(22), 12300-12309.
  • Beihu Lu, L. H., Huayi, Y., Xuhui, M., Wei, X., Dihua, W., (2016). Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International journal of hydrogen energy, 41, 18713-18720.
  • Chen, J., Zhou, X., Mei, C., Xu, J., Zhou, S., Wong, C..P., (2017). Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors. Journal of Power Sources, 342, 48-55.
  • Chongjun, Z. Y. H., Chunhua, Z., Xiaoxiao, S., Zhaoqiang, Z., (2018). Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochimica Acta, 291, 287-296.
  • Choudhury, F. A., Norouzi, N., Amir, K., Demir, M., El-Kaderi, H. M., (2021). Iron-based sulfur and nitrogen dual doped porous carbon as durable electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 47, (9), 6078-6088
  • Demir, M., Jethrine, B. A., Mugumya, H. K., Sushil, H., El-Kaderi, S., Gupta, M. B. R., (2018). Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. International journal of hydrogen energy, 43, 18549-18558.
  • Du, W., Wang, X., Sun, X., Zhan, J., Zhang, H., Zhao, X., (2018). Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 827, 213-220.
  • Duan, F., Zhang, J. P., Chyang, C. S., Wang, Y. J., Tso, J., (2014). Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel Processing Technology,128, 28-35.
  • Faith, O., Ochai-Ejeh, A. B., Julien, D., Abubakar, A. K., Moshawe, J. M., Farshad, B., Ncholu, M., (2017). High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). Journal of Mater Science: Mater Electron, 52, 10600-10613.
  • Fan, M., Marshall, W., Daugaard, D., Brown, R. C., (2004). Steam activation of chars produced from oat hulls and corn stover. Bioresource Technology, 93(1), 103-107.
  • Farshadnia, M., Ensafi, A. A., Mousaabadi, K. Z., Rezaei, B., Demir, M., (2023). Facile synthesis of NiTe2-Co2Te2@rGO nanocomposite for high-performance hybrid supercapacitor. Scientific Reports, 13, 1364.
  • Gandla, D., Chen, H., Tan, D. Q., (2020). Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon. Materials Research Express, 7(8).
  • Gao, Y., Zhou, Y. S., Qian, M., He, X. N., Redepenning, J., Goodman, P., Lu, Y. F., (2013). Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 51, 52-58.
  • Girgis, B. S., Soliman, A. M., Fathy, N.A. (2011). Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation. Microporous and Mesoporous Materials,142(2-3), 518-525.
  • Guo, F., Jiang, X., Li, X., Peng, K., Guo, C., Rao, Z. (2019). Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor. Journal of Materials Science: Materials in Electronics, 30(1), 914-925.
  • Hai-Hai, F. L. C., Haojie, G., Xiaokun, Y., Juan, H., Gang, W., Feng, Y., Haoquan, L., Changchun, F., Yu-Lin, S., Xuhong, G., (2020). Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. International journal of hydrogen energy, 45, 443-451.
  • Huafang, Y. Y. T., Xiaogu, H., Lixi, W., Qitu, Z. (2017). Activated porous carbon derived from walnut shells with promising material properties for supercapacitors. Journal of Mater Science: Mater Electron, 28, 18637-18645.
  • Huang, Y. G., Wang, Y. Y., Cai, Y. Z., Wang, H. Q., Li, Q. Y., Wu, Q., Ma, Z. L. (2021). Diatomite waste derived N-doped porous carbon for applications in the oxygen reduction reaction and supercapacitors. Nanoscale Advances, 3(13), 3860-3866.
  • Inagaki, M., Konno, H., Tanaike, O. (2010). Carbon materials for electrochemical capacitors. Journal of Power Sources,195(24), 7880-7903.
  • Juan, M., X-R, W., Rui-Jun, F., Wen-Hui, Q., Wen-Cui, L. (2012). Coconut-shell-based porous carbons with a tunable micro/ mesopore ratio for high-performance supercapacitors. Energy & Fuels, 26, 5321-5329.
  • Kalyani, P., Anitha, A. (2013). Biomass carbon & its prospects in electrochemical energy systems. International Journal of Hydrogen Energy, 38(10), 4034-4045.
  • Li, N., Yue, Q., Gao, B., Xu, X., Su, R., Yu, B. (2019). One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. Journal of Cleaner Production, 207, 764-771.
  • Miller, J. R., Simon, P. (2008). Electrochemical capacitors for energy management. Science, 321(5889), 651-652.
  • Mingyang, Z. Y. S., Rongjun, S. (2021). Hierarchical porous carbon obtained by Mg–Al double hydroxide templates with high volumetric capacitance and rate performance. Microporous and Mesoporous Materials, 330, 111593-111601.
  • Mousavi, S.S., Nasrollahzadeh, B. J. M., Eslamipanah, M., Khazalpour, S., Orooji, Y. (2021). Laser-assisted synthesis of bentonite/Pd nanocomposite and its electrochemical hydrogen storage capacity. Microporous and Mesoporous Materials, 328, 111439-111449.
  • Sesuk, T., Jivaganont, P. T. P., Somton, K., Limthongkul, P., Kobsiriphat, W. (2019). Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. Journal of Energy Storage, 25, 100910-100919.
  • Sun, Y., Xue, S., Sun, J., Li, X., Ou, Y., Zhu, B., Demir, M. (2023). Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors. Journal of Colloid and Interface Science
  • Wei, D., Chen, Z., Jin, J., Wei, B., Li, Q., Yang, S.,Wang, X. (2018). Interaction of U (VI) with amine-modified peanut shell studied by macroscopic and microscopic spectroscopy analysis. Journal of Cleaner Production, 195, 497-506.
  • Williams, P. T., Reed, A. R. (2006). Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass and Bioenergy, 30(2), 144-152.
  • Xiaodu, L, R, L., Xiaoliang, W. (2021). Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous and Mesoporous Materials, 310, 110659-110666.
  • Xin, W. Z. G., Jiuli, C., Dapeng, W., Xiaorui, W., Fang, X., Yuming, G., Kai, J. (2015). Electrochemical energy storage and adsorptive dye removal 5 of platanus fruit derived porous carbon. RSC Advances, 5, 15969-15976.
  • Yaokang, L. L. G., Mingxian, L., Wei, X., Zijie, X., Dazhang, Z., Dominic, S. W. (2012). A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. Journal of Power Sources, 209, 152-157.
  • Yu, K., Zhu, H., Qi, H., Liang, C. (2018). High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diamond & Related Materials, 88, 18-22.
  • Zhan, Y., Zhou, H., Guo, F., Tian, B., Du, S., Dong, Y., Qian, L. (2021). Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors. Journal of Energy Storage, 34, 102180.
  • Zhang, L. L., Zhao, X.S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.
  • Zhang, S., Shi, X., Wróbel, R., Chen, X., Mijowska, E. (2019). Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 294, 183-191.
  • Zhang, T., Walawender, W. P., Fan, L., Fan, M., Daugaard, D., Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal, 105(1-2), 53-59.
  • Zhang, X., Jiao, Y., Sun, L., Wang, L., Wu, A., Yan, H., Fu, H. (2016). GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale, 8(4), 2418-2427.
  • Zhao, J., Li, Y., Huang, F., Zhang, H., Gong, J., Miao, C., Zhu, K., Cheng, K., Ye, K., Yan, J., Cao, D., Wang, G., Zhang, X. (2018). High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. Journal of Electroanalytical Chemistry, 823, 474-481.
  • Zhao, L., Fan, L. Z., Zhou, M. Q., Guan, H., Qiao, S., Antonietti, M., Titirici, M. M. (2010). Nitrogen‐containing hydrothermal carbons with superior performance in supercapacitors. Advanced Materials, 22(45), 5202-5206.
  • Zhong, X. X., Mao, Q. Y., Li, Z. S., Wu, Z. G., Xie, Y. T., Li, S. H., Wang, H. Q. (2021). Biomass-derived O, N-codoped hierarchically porous carbon prepared by black fungus and Hericium erinaceus for high performance supercapacitor. Rsc Advances, 11(45), 27860-27867.

Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance

Year 2023, Volume: 13 Issue: 3, 1888 - 1901, 01.09.2023
https://doi.org/10.21597/jist.1180016

Abstract

Biomass-derived carbons have been extensively investigated for supercapacitor applications thanks to their advantages such as high specific capacitance value, low cost, environmental friendliness, and readily available natural materials. In this study, unique oxygen-rich porous carbons were successfully prepared by combining chemical KOH and physical CO2 activation methods. The physical and textural properties of as-prepared carbon materials are highly dependent on the synthesis conditions. The resulting PC-4K-CO2 porous carbon exhibited a hierarchical porous structure consisting of micropores, mesopores, and macropores along with a large surface area of 1318.4 cm2/g, which allowed high exposure of electrocatalytic sites and ion diffusion/transfer facilitated. As a supercapacitor electrode material, PC-4K-CO2 porous carbon prepared at 800 °C with synergic activation of KOH and CO2 showed the highest specific capacitance of 151 F/g at a current density of 0.5 A/g in the 1 M KOH electrolyte. Besides, the electrode prepared with the PC-4K-CO2 sample has achieved an excellent long-cycling life with only an 8.6% loss of its initial capacitance over 500 cycles even at a current density of 5 A/g. The current study emphasizes the environmental significance of turning pistachio shells into electrode materials for high-performance supercapacitors.

Supporting Institution

The Scientific Research Council of Osmaniye Korkut Ata University and The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

2020-PT2-002 and TEYDEP 2200261

Thanks

The Scientific Research Council of Osmaniye Korkut Ata University and The Scientific and Technological Research Council of Turkey (TUBITAK) both provided funding for this project under the terms of projects 2020-PT2-002 and TEYDEP 2200261, respectively. The authors also thank MSLM27 Technology Development and Consulting Company for their financial and consultancy support.

References

  • Ahmadpour A., Do, DD,. (1996). The preparation of active carbons from coal by chemical and physical activation.Carbon, 34(4), 471-479.
  • Ahmadpour, A., King, B. A., Do, DD,. (1998). Comparison of equilibria and kinetics of high surface area activated carbon produced from different precursors and by different chemical treatments. Industrial & Engineering Chemistry Research, 37(4), 1329-1334.
  • Altay, B. N., Aksoy, B., Banerjee, D., Maddipatla, D., Fleming, P. D., Bolduc, M., Demir, M., (2021). Lignin-derived carbon-coated functional paper for printed electronics. Acs Applied Electronic Materials, 3(9), 3904-3914.
  • Altinci, O. C., Demir, M., (2020). Beyond conventional activating methods, a green approach for the synthesis of biocarbon and its supercapacitor electrode performance. Energy & Fuels, 34(6), 7658-7665.
  • Ashourirad, B., Demir, M., Smith, R. A., Gupta, R. B., El-Kaderi, H. M., (2018). Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. Rsc Advances, 8(22), 12300-12309.
  • Beihu Lu, L. H., Huayi, Y., Xuhui, M., Wei, X., Dihua, W., (2016). Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International journal of hydrogen energy, 41, 18713-18720.
  • Chen, J., Zhou, X., Mei, C., Xu, J., Zhou, S., Wong, C..P., (2017). Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors. Journal of Power Sources, 342, 48-55.
  • Chongjun, Z. Y. H., Chunhua, Z., Xiaoxiao, S., Zhaoqiang, Z., (2018). Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochimica Acta, 291, 287-296.
  • Choudhury, F. A., Norouzi, N., Amir, K., Demir, M., El-Kaderi, H. M., (2021). Iron-based sulfur and nitrogen dual doped porous carbon as durable electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 47, (9), 6078-6088
  • Demir, M., Jethrine, B. A., Mugumya, H. K., Sushil, H., El-Kaderi, S., Gupta, M. B. R., (2018). Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. International journal of hydrogen energy, 43, 18549-18558.
  • Du, W., Wang, X., Sun, X., Zhan, J., Zhang, H., Zhao, X., (2018). Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 827, 213-220.
  • Duan, F., Zhang, J. P., Chyang, C. S., Wang, Y. J., Tso, J., (2014). Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel Processing Technology,128, 28-35.
  • Faith, O., Ochai-Ejeh, A. B., Julien, D., Abubakar, A. K., Moshawe, J. M., Farshad, B., Ncholu, M., (2017). High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). Journal of Mater Science: Mater Electron, 52, 10600-10613.
  • Fan, M., Marshall, W., Daugaard, D., Brown, R. C., (2004). Steam activation of chars produced from oat hulls and corn stover. Bioresource Technology, 93(1), 103-107.
  • Farshadnia, M., Ensafi, A. A., Mousaabadi, K. Z., Rezaei, B., Demir, M., (2023). Facile synthesis of NiTe2-Co2Te2@rGO nanocomposite for high-performance hybrid supercapacitor. Scientific Reports, 13, 1364.
  • Gandla, D., Chen, H., Tan, D. Q., (2020). Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon. Materials Research Express, 7(8).
  • Gao, Y., Zhou, Y. S., Qian, M., He, X. N., Redepenning, J., Goodman, P., Lu, Y. F., (2013). Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 51, 52-58.
  • Girgis, B. S., Soliman, A. M., Fathy, N.A. (2011). Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation. Microporous and Mesoporous Materials,142(2-3), 518-525.
  • Guo, F., Jiang, X., Li, X., Peng, K., Guo, C., Rao, Z. (2019). Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor. Journal of Materials Science: Materials in Electronics, 30(1), 914-925.
  • Hai-Hai, F. L. C., Haojie, G., Xiaokun, Y., Juan, H., Gang, W., Feng, Y., Haoquan, L., Changchun, F., Yu-Lin, S., Xuhong, G., (2020). Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. International journal of hydrogen energy, 45, 443-451.
  • Huafang, Y. Y. T., Xiaogu, H., Lixi, W., Qitu, Z. (2017). Activated porous carbon derived from walnut shells with promising material properties for supercapacitors. Journal of Mater Science: Mater Electron, 28, 18637-18645.
  • Huang, Y. G., Wang, Y. Y., Cai, Y. Z., Wang, H. Q., Li, Q. Y., Wu, Q., Ma, Z. L. (2021). Diatomite waste derived N-doped porous carbon for applications in the oxygen reduction reaction and supercapacitors. Nanoscale Advances, 3(13), 3860-3866.
  • Inagaki, M., Konno, H., Tanaike, O. (2010). Carbon materials for electrochemical capacitors. Journal of Power Sources,195(24), 7880-7903.
  • Juan, M., X-R, W., Rui-Jun, F., Wen-Hui, Q., Wen-Cui, L. (2012). Coconut-shell-based porous carbons with a tunable micro/ mesopore ratio for high-performance supercapacitors. Energy & Fuels, 26, 5321-5329.
  • Kalyani, P., Anitha, A. (2013). Biomass carbon & its prospects in electrochemical energy systems. International Journal of Hydrogen Energy, 38(10), 4034-4045.
  • Li, N., Yue, Q., Gao, B., Xu, X., Su, R., Yu, B. (2019). One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. Journal of Cleaner Production, 207, 764-771.
  • Miller, J. R., Simon, P. (2008). Electrochemical capacitors for energy management. Science, 321(5889), 651-652.
  • Mingyang, Z. Y. S., Rongjun, S. (2021). Hierarchical porous carbon obtained by Mg–Al double hydroxide templates with high volumetric capacitance and rate performance. Microporous and Mesoporous Materials, 330, 111593-111601.
  • Mousavi, S.S., Nasrollahzadeh, B. J. M., Eslamipanah, M., Khazalpour, S., Orooji, Y. (2021). Laser-assisted synthesis of bentonite/Pd nanocomposite and its electrochemical hydrogen storage capacity. Microporous and Mesoporous Materials, 328, 111439-111449.
  • Sesuk, T., Jivaganont, P. T. P., Somton, K., Limthongkul, P., Kobsiriphat, W. (2019). Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. Journal of Energy Storage, 25, 100910-100919.
  • Sun, Y., Xue, S., Sun, J., Li, X., Ou, Y., Zhu, B., Demir, M. (2023). Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors. Journal of Colloid and Interface Science
  • Wei, D., Chen, Z., Jin, J., Wei, B., Li, Q., Yang, S.,Wang, X. (2018). Interaction of U (VI) with amine-modified peanut shell studied by macroscopic and microscopic spectroscopy analysis. Journal of Cleaner Production, 195, 497-506.
  • Williams, P. T., Reed, A. R. (2006). Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass and Bioenergy, 30(2), 144-152.
  • Xiaodu, L, R, L., Xiaoliang, W. (2021). Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous and Mesoporous Materials, 310, 110659-110666.
  • Xin, W. Z. G., Jiuli, C., Dapeng, W., Xiaorui, W., Fang, X., Yuming, G., Kai, J. (2015). Electrochemical energy storage and adsorptive dye removal 5 of platanus fruit derived porous carbon. RSC Advances, 5, 15969-15976.
  • Yaokang, L. L. G., Mingxian, L., Wei, X., Zijie, X., Dazhang, Z., Dominic, S. W. (2012). A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. Journal of Power Sources, 209, 152-157.
  • Yu, K., Zhu, H., Qi, H., Liang, C. (2018). High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diamond & Related Materials, 88, 18-22.
  • Zhan, Y., Zhou, H., Guo, F., Tian, B., Du, S., Dong, Y., Qian, L. (2021). Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors. Journal of Energy Storage, 34, 102180.
  • Zhang, L. L., Zhao, X.S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.
  • Zhang, S., Shi, X., Wróbel, R., Chen, X., Mijowska, E. (2019). Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 294, 183-191.
  • Zhang, T., Walawender, W. P., Fan, L., Fan, M., Daugaard, D., Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal, 105(1-2), 53-59.
  • Zhang, X., Jiao, Y., Sun, L., Wang, L., Wu, A., Yan, H., Fu, H. (2016). GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors. Nanoscale, 8(4), 2418-2427.
  • Zhao, J., Li, Y., Huang, F., Zhang, H., Gong, J., Miao, C., Zhu, K., Cheng, K., Ye, K., Yan, J., Cao, D., Wang, G., Zhang, X. (2018). High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. Journal of Electroanalytical Chemistry, 823, 474-481.
  • Zhao, L., Fan, L. Z., Zhou, M. Q., Guan, H., Qiao, S., Antonietti, M., Titirici, M. M. (2010). Nitrogen‐containing hydrothermal carbons with superior performance in supercapacitors. Advanced Materials, 22(45), 5202-5206.
  • Zhong, X. X., Mao, Q. Y., Li, Z. S., Wu, Z. G., Xie, Y. T., Li, S. H., Wang, H. Q. (2021). Biomass-derived O, N-codoped hierarchically porous carbon prepared by black fungus and Hericium erinaceus for high performance supercapacitor. Rsc Advances, 11(45), 27860-27867.
There are 45 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Murat Yılmaz 0000-0002-6465-6960

Mikail Baykal 0000-0001-6919-9052

Ahmed A. Farghaly 0000-0001-7948-3700

Müslüm Demir 0000-0001-6842-8124

Project Number 2020-PT2-002 and TEYDEP 2200261
Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date September 26, 2022
Acceptance Date May 18, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Yılmaz, M., Baykal, M., Farghaly, A. A., Demir, M. (2023). Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance. Journal of the Institute of Science and Technology, 13(3), 1888-1901. https://doi.org/10.21597/jist.1180016
AMA Yılmaz M, Baykal M, Farghaly AA, Demir M. Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance. J. Inst. Sci. and Tech. September 2023;13(3):1888-1901. doi:10.21597/jist.1180016
Chicago Yılmaz, Murat, Mikail Baykal, Ahmed A. Farghaly, and Müslüm Demir. “Production of Porous Carbon by the Synergistic Chemical and Physical Activations and Its Capacitive Performance”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1888-1901. https://doi.org/10.21597/jist.1180016.
EndNote Yılmaz M, Baykal M, Farghaly AA, Demir M (September 1, 2023) Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance. Journal of the Institute of Science and Technology 13 3 1888–1901.
IEEE M. Yılmaz, M. Baykal, A. A. Farghaly, and M. Demir, “Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1888–1901, 2023, doi: 10.21597/jist.1180016.
ISNAD Yılmaz, Murat et al. “Production of Porous Carbon by the Synergistic Chemical and Physical Activations and Its Capacitive Performance”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1888-1901. https://doi.org/10.21597/jist.1180016.
JAMA Yılmaz M, Baykal M, Farghaly AA, Demir M. Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance. J. Inst. Sci. and Tech. 2023;13:1888–1901.
MLA Yılmaz, Murat et al. “Production of Porous Carbon by the Synergistic Chemical and Physical Activations and Its Capacitive Performance”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1888-01, doi:10.21597/jist.1180016.
Vancouver Yılmaz M, Baykal M, Farghaly AA, Demir M. Production of Porous Carbon by the Synergistic Chemical and Physical Activations and its Capacitive Performance. J. Inst. Sci. and Tech. 2023;13(3):1888-901.