Research Article
BibTex RIS Cite

Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan

Year 2019, Volume: 23 Issue: 3, 885 - 891, 25.12.2019
https://doi.org/10.19113/sdufenbed.551558

Abstract

The aim
of this study was to examine the transfection efficiency of the fluorination
modification without the addition of any cationic charge on the chitosan (Chi)
molecule. The fluorination reaction on Chi (ChiF) was carried out with using
1H,1H,2H,2H-Perfluorooctyltriethoxysilane
(SiF). The characterization of ChiF was realized by Fourier transform infrared
(FTIR) analysis and its molecular weight (Mw) and polydispersity index (PDIMw)
were determined using GPC-SEC system. The physical properties of nanoparticles
(nChiF) obtained by ionic gelation method were determined. The gel
electrophoresis analysis was applied to the nanoparticles for determine the
gene complexing capacity. The cytotoxicity of ChiF onto Human Embryonic Kidney (HEK293)
cells was determined via MTT colorimetric assay. The cell confluency (after
transfection) and transfection efficiency of nChiF on HEK293 cells were
evaluated. The results showed that the nChiF2:pEGFN1 complex (ratio of 35:1)
with a particle size of 98.1±2.2 nm and zeta potential of 34.7 ± 6.5 mV, is
more superior agent for transfection efficiency in HEK293 cells due to its high
transfection effect and higher cell confluency. As a result, it has been showed
that the fluorination reaction onto Chi without any cationic charge
modification enhance the transfection efficiency for HEK293 cell lines.

References

  • [1] Luo, T.Y., Zhang, H.J., Chen, P., Liu, Y.H., Wang H.J., Yu, X.Q. 2018. Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Advances, 8, 6053-6062.
  • [2] Cai, X., Jin, R., Wang, J., Yue, D., Jiang, Q., Wu, Y., Gu, Z. 2016. Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. Applied Materials & Interfaces, 8, 5821-5832.
  • [3] Özgümüş, S., Gök, M.K., Pabuccuoğlu, S. 2015. Chitosan: Gene Delivery. ss 1735-1749. Mishra, M., ed. 2015. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, CRCPress, Taylor & Francis, USA, 10444 s.
  • [4] Mintzer, M.A., Simanek, E.E. 2008. Nonviral vectors for gene delivery. Chemical Reviews, 109(2), 259-302.
  • [5] Thomas, C.E., Ehrhardt, A., Kay, M.A. 2003. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 4(5), 346-358.
  • [6] Saranya, N., Moorthi, A., Saravanan, S., Devi, M.P., Selvamurugan, N. 2011. Chitosan and its derivatives for gene delivery. International Journal of Biological Macromolecules, 48(2), 234-238.
  • [7] Thomas, M., Klibanov, A. 2003. Non-viral gene therapy: polycation-mediated DNA delivery. Applied Microbiology and Biotechnology, 62(1), 27-34.
  • [8] Opanasopit, P., Sajomsang, W., Ruktanonchai, U., Mayen, V., Rojanarata, T., Ngawhirunpat, T. 2008. Methylated N-(4-pyridinylmethyl) chitosan as a novel effective safe gene carrier. International Journal of Pharmaceutics, 364(1), 127-134.
  • [9] Gong, J.H., Wang, Y., Xing, L., Cui P.F., Qiao, J.B., He, Y.J., Jiang, H.L. 2018. Biocampatible fluorinated poly(β-amino ester)s for safe and efficient gene tehrapy. International Journal of Pharamceutics, 535, 180-193.
  • [10] Chen G., Wang, K., Hu, Q., Ding, L., Yu, F., Zhou, Z., Zhou, Y., Li, J., Sun, M., Oupicky, D. 2017. Combining fluorination and bioreducibility for ımproved sirna polyplex delivery. Applied Materials & Interfaces, 9, 4457-4466.
  • [11] Zuo, G., Xie, A., Pan, X., Su, T., Li, J., Dong, W. 2018. Fluorine-Doped cationic carbon dots for efficient gene delivery. Applied Nano Materials, 1, 2376-2385.
  • [12] Wu, T., Wang, L., Ding, S., You, Y. 2017. Fluorinated PEG-polypeptide polyplex micelles have good serum-resistance and low cytotoxicity for gene delivery. Macromolecular Bioscience, 17, 1-8.
  • [13] Belabassi, Y., Moreau, J., Gheran, V., Henoumont, C., Robert A., Callewaert, M., Rigaux, G., Cadiou, C., Elst, L.V., Laurent, S., Muller, R.N., Dinischiotu, A., Voicu, S.N., Chuburu, F. 2017. Synthesis and characterization of PEGylated and fluorinated chitosans: Application to the synthesis of targeted naoparticles for drug delivery. Biomacromolecules, 18, 2756-2766.
  • [14] ASTM, ASTM F2602-08, Standard Test Method for Determining the Molar Mass of Chitosan and Chitosan Salts by Size Exclusion Chromatography with Multi angle Light Scattering Detection (SEC-MALS), ASTM International, West Conshohocken, PA, 2008.
  • [15] Duran, H., Alkan, F.Ü., Ulkay, M.B., Karakuş, S., Aktaş, A., Şişmanoğlu, T. 2019. Investigation of the in vitro cytotoxic effects and wound healing activity of ternary composite substance (hollow silica sphere/gum arabic/methylene blue). International Journal of Biological Macromolecules, 121, 1194-1202.
  • [16] Sharma, D., Singh, J. 2017. Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjugate Chemistry, 28(11), 2772-2783.
  • [17] Shahabadi, S.M.S., Rabiee, H., Seyedi, S.M., Mokhtare, A., Brant, J.A. 2017. Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation. Journal of Membrane Science, 537, 140-150.
  • [18] Zhang, K., Wu, J., Chu, P., Ge, Y., Zhao, R., Li, X. 2015. A novel CVD method for rapid fabrication of superhydrophobic surface on aluminium alloy coated nanostructured cerium-oxide and its corrosion resistance. International Journal of Electrochemical Science, 10, 6257-6272.
  • [19] Sabnis, S., Block, L.H. 1997. Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer Bulletin, 39(1), 67-71.
  • [20] Gök, M.K. 2019. In vitro evaluation of synergistic effect of primary and tertiary amino groups in chitosan used as non-viral gene carrier system. European Polymer Journal, 115, 375-383.
  • [21] Cho, K., Wang, X., Nie, S., Chen, Z., Shin, D.M. 2008. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310-1316.
  • [22] Lavertu, M., Methot, S., Tran-Khanh, N., Buschmann, M.D. 2006. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 27(27), 4815-4824.
  • [23] Li, Z.T., Guo, J., Zhang, J.S., Zhao, Y.P., Lv, L., Ding, C., Zhang, X.Z. 2010. Chitosan-graft-polyethylenimine with improved properties as a potential gene vector. Carbohydrate Polymers, 80(1), 254-259.
  • [24] Wong, S.Y., Pelet, J.M., Putnam, D. 2007. Polymer systems for gene delivery-past, present, and future. Progress in Polymer Science, 32(8-9), 799-837.
  • [25] Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., Danielsen, M. 1987. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 84(21), 7413-7417.
  • [26] Wang, M., Liu H., Li, L., Cheng, Y. 2014. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nature Communications, 5(3053), 1-8.
  • [27] Kim, T.H., Jiang, H.L., Jere, D., Park, I.K., Cho, M.H., Nah, J.W., Choi, Y.J., Akaike, T., Cho, C.S. 2007. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Progress in Polymer Science, 32(7), 726-753.

Kitosan Esaslı Viral Olmayan Gen Taşıyıcı Sistemlerin Transfeksiyon Verimliliği Üzerine Florlama Modifikasyonunun Etkisi

Year 2019, Volume: 23 Issue: 3, 885 - 891, 25.12.2019
https://doi.org/10.19113/sdufenbed.551558

Abstract

Bu
çalışmanın amacı, kitosan (Chi) molekülü üzerine herhangi bir katyonik yük
eklenmeden florinasyon modifikasyonunun transfeksiyon etkinliğini incelemektir.
Chi üzerindeki florlama reaksiyonu (ChiF), 1H, 1H, 2H,
2H-Perflorooktiltrietoksisilan (SiF) kullanılarak gerçekleştirildi. ChiF'in
karakterizasyonu, Fourier Transform Infrared Spektroskopisi (FTIR) analizi ile
gerçekleştirilmiş ve molekül ağırlığı (Mw) ve polidispersite indeksi (PDIMw),
GPC-SEC sistemi kullanılarak belirlenmiştir. İyonik jelleşme yöntemiyle elde
edilen nanopartiküllerin (nChiF) fiziksel özellikleri belirlenmiştir. Gen
kompleksleme kapasitesini belirlemek için nanoparçacıklara jel elektroforez
analizi uygulandı. ChiF'nin İnsan Embriyonik Böbrek (HEK293) hücreleri
üzerindeki sitotoksisitesi, MTT kolorimetrik deneyi ile belirlendi. HEK293
hücreleri üzerine nChiF'nin transfeksiyon etkinliği ve hücre yayılımı
(transfeksiyon sonrası) sonuçları değerlendirildi. Sonuçlar, 98.1 ± 2.2 nm
partikül büyüklüğüne ve 34.7 ± 6.5 mV zeta potansiyeline sahip nChiF2: pEGFN1
kompleksinin (35: 1 oranı), yüksek transfeksiyon etkisi ve daha yüksek hücre
yayılımı gösterdiğinden dolayı HEK293 hücrelerinde transfeksiyon etkinliği için
daha üstün bir ajan olduğunu göstermiştir. Sonuç olarak, Chi üzerine herhangi
bir katyonik yük modifikasyonu olmadan florinasyon reaksiyonunun, HEK293 hücre
hatları için transfeksiyon verimliliğini arttırdığı görülmektedir.

References

  • [1] Luo, T.Y., Zhang, H.J., Chen, P., Liu, Y.H., Wang H.J., Yu, X.Q. 2018. Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Advances, 8, 6053-6062.
  • [2] Cai, X., Jin, R., Wang, J., Yue, D., Jiang, Q., Wu, Y., Gu, Z. 2016. Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. Applied Materials & Interfaces, 8, 5821-5832.
  • [3] Özgümüş, S., Gök, M.K., Pabuccuoğlu, S. 2015. Chitosan: Gene Delivery. ss 1735-1749. Mishra, M., ed. 2015. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, CRCPress, Taylor & Francis, USA, 10444 s.
  • [4] Mintzer, M.A., Simanek, E.E. 2008. Nonviral vectors for gene delivery. Chemical Reviews, 109(2), 259-302.
  • [5] Thomas, C.E., Ehrhardt, A., Kay, M.A. 2003. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 4(5), 346-358.
  • [6] Saranya, N., Moorthi, A., Saravanan, S., Devi, M.P., Selvamurugan, N. 2011. Chitosan and its derivatives for gene delivery. International Journal of Biological Macromolecules, 48(2), 234-238.
  • [7] Thomas, M., Klibanov, A. 2003. Non-viral gene therapy: polycation-mediated DNA delivery. Applied Microbiology and Biotechnology, 62(1), 27-34.
  • [8] Opanasopit, P., Sajomsang, W., Ruktanonchai, U., Mayen, V., Rojanarata, T., Ngawhirunpat, T. 2008. Methylated N-(4-pyridinylmethyl) chitosan as a novel effective safe gene carrier. International Journal of Pharmaceutics, 364(1), 127-134.
  • [9] Gong, J.H., Wang, Y., Xing, L., Cui P.F., Qiao, J.B., He, Y.J., Jiang, H.L. 2018. Biocampatible fluorinated poly(β-amino ester)s for safe and efficient gene tehrapy. International Journal of Pharamceutics, 535, 180-193.
  • [10] Chen G., Wang, K., Hu, Q., Ding, L., Yu, F., Zhou, Z., Zhou, Y., Li, J., Sun, M., Oupicky, D. 2017. Combining fluorination and bioreducibility for ımproved sirna polyplex delivery. Applied Materials & Interfaces, 9, 4457-4466.
  • [11] Zuo, G., Xie, A., Pan, X., Su, T., Li, J., Dong, W. 2018. Fluorine-Doped cationic carbon dots for efficient gene delivery. Applied Nano Materials, 1, 2376-2385.
  • [12] Wu, T., Wang, L., Ding, S., You, Y. 2017. Fluorinated PEG-polypeptide polyplex micelles have good serum-resistance and low cytotoxicity for gene delivery. Macromolecular Bioscience, 17, 1-8.
  • [13] Belabassi, Y., Moreau, J., Gheran, V., Henoumont, C., Robert A., Callewaert, M., Rigaux, G., Cadiou, C., Elst, L.V., Laurent, S., Muller, R.N., Dinischiotu, A., Voicu, S.N., Chuburu, F. 2017. Synthesis and characterization of PEGylated and fluorinated chitosans: Application to the synthesis of targeted naoparticles for drug delivery. Biomacromolecules, 18, 2756-2766.
  • [14] ASTM, ASTM F2602-08, Standard Test Method for Determining the Molar Mass of Chitosan and Chitosan Salts by Size Exclusion Chromatography with Multi angle Light Scattering Detection (SEC-MALS), ASTM International, West Conshohocken, PA, 2008.
  • [15] Duran, H., Alkan, F.Ü., Ulkay, M.B., Karakuş, S., Aktaş, A., Şişmanoğlu, T. 2019. Investigation of the in vitro cytotoxic effects and wound healing activity of ternary composite substance (hollow silica sphere/gum arabic/methylene blue). International Journal of Biological Macromolecules, 121, 1194-1202.
  • [16] Sharma, D., Singh, J. 2017. Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjugate Chemistry, 28(11), 2772-2783.
  • [17] Shahabadi, S.M.S., Rabiee, H., Seyedi, S.M., Mokhtare, A., Brant, J.A. 2017. Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation. Journal of Membrane Science, 537, 140-150.
  • [18] Zhang, K., Wu, J., Chu, P., Ge, Y., Zhao, R., Li, X. 2015. A novel CVD method for rapid fabrication of superhydrophobic surface on aluminium alloy coated nanostructured cerium-oxide and its corrosion resistance. International Journal of Electrochemical Science, 10, 6257-6272.
  • [19] Sabnis, S., Block, L.H. 1997. Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer Bulletin, 39(1), 67-71.
  • [20] Gök, M.K. 2019. In vitro evaluation of synergistic effect of primary and tertiary amino groups in chitosan used as non-viral gene carrier system. European Polymer Journal, 115, 375-383.
  • [21] Cho, K., Wang, X., Nie, S., Chen, Z., Shin, D.M. 2008. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310-1316.
  • [22] Lavertu, M., Methot, S., Tran-Khanh, N., Buschmann, M.D. 2006. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 27(27), 4815-4824.
  • [23] Li, Z.T., Guo, J., Zhang, J.S., Zhao, Y.P., Lv, L., Ding, C., Zhang, X.Z. 2010. Chitosan-graft-polyethylenimine with improved properties as a potential gene vector. Carbohydrate Polymers, 80(1), 254-259.
  • [24] Wong, S.Y., Pelet, J.M., Putnam, D. 2007. Polymer systems for gene delivery-past, present, and future. Progress in Polymer Science, 32(8-9), 799-837.
  • [25] Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., Danielsen, M. 1987. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 84(21), 7413-7417.
  • [26] Wang, M., Liu H., Li, L., Cheng, Y. 2014. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nature Communications, 5(3053), 1-8.
  • [27] Kim, T.H., Jiang, H.L., Jere, D., Park, I.K., Cho, M.H., Nah, J.W., Choi, Y.J., Akaike, T., Cho, C.S. 2007. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Progress in Polymer Science, 32(7), 726-753.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Koray Gök 0000-0003-2497-9359

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Gök, M. K. (2019). Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 885-891. https://doi.org/10.19113/sdufenbed.551558
AMA Gök MK. Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan. SDÜ Fen Bil Enst Der. December 2019;23(3):885-891. doi:10.19113/sdufenbed.551558
Chicago Gök, Mehmet Koray. “Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 885-91. https://doi.org/10.19113/sdufenbed.551558.
EndNote Gök MK (December 1, 2019) Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 885–891.
IEEE M. K. Gök, “Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan”, SDÜ Fen Bil Enst Der, vol. 23, no. 3, pp. 885–891, 2019, doi: 10.19113/sdufenbed.551558.
ISNAD Gök, Mehmet Koray. “Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 885-891. https://doi.org/10.19113/sdufenbed.551558.
JAMA Gök MK. Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan. SDÜ Fen Bil Enst Der. 2019;23:885–891.
MLA Gök, Mehmet Koray. “Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 885-91, doi:10.19113/sdufenbed.551558.
Vancouver Gök MK. Effect of Fluorination Modification on Transfection Efficiency of Non-Viral Gene Carrier Systems Based on Chitosan. SDÜ Fen Bil Enst Der. 2019;23(3):885-91.

e-ISSN: 1308-6529