汶川地震假玄武玻璃的特征、成因及其构造意义

王焕, 李海兵, 司家亮, 裴军令, 孙知明, 张蕾. 2023. 汶川地震假玄武玻璃的特征、成因及其构造意义. 岩石学报, 39(12): 3833-3847. doi: 10.18654/1000-0569/2023.12.18
引用本文: 王焕, 李海兵, 司家亮, 裴军令, 孙知明, 张蕾. 2023. 汶川地震假玄武玻璃的特征、成因及其构造意义. 岩石学报, 39(12): 3833-3847. doi: 10.18654/1000-0569/2023.12.18
WANG Huan, LI HaiBing, SI JiaLiang, PEI JunLing, SUN ZhiMing, ZHANG Lei. 2023. Characteristics, genesis and tectonic significance of the pseudotachylyte produced by the Wenchuan earthquake. Acta Petrologica Sinica, 39(12): 3833-3847. doi: 10.18654/1000-0569/2023.12.18
Citation: WANG Huan, LI HaiBing, SI JiaLiang, PEI JunLing, SUN ZhiMing, ZHANG Lei. 2023. Characteristics, genesis and tectonic significance of the pseudotachylyte produced by the Wenchuan earthquake. Acta Petrologica Sinica, 39(12): 3833-3847. doi: 10.18654/1000-0569/2023.12.18

汶川地震假玄武玻璃的特征、成因及其构造意义

  • 基金项目:

    本文受国家自然科学基金项目(41972229,42372266,41830217)和第二次青藏高原综合科学考察研究项目(2019QZKK0901)联合资助

详细信息
    作者简介:

    王焕, 女, 1984年生, 副研究员, 主要从事活动构造与断裂作用研究, E-mail: wanghuan4585@126.com

  • 中图分类号: P315;P585.2

Characteristics, genesis and tectonic significance of the pseudotachylyte produced by the Wenchuan earthquake

  • 富流体的断层泥是浅部地震断层带中的特征岩石。一般认为,地震过程中摩擦热会导致粒间孔隙流体热膨胀增压,形成同震断层弱化(热增压机制),从而抑制摩擦熔融的发生。然而我们研究发现,在2008年汶川大地震(MW 7.9)中断层浅部发生了摩擦熔融。汶川地震发生一年后,我们在汶川地震断裂带科学钻探项目一号钻孔(WFSD-1)732.6m深处的断层泥中发现了厚度约2mm的假玄武玻璃(凝固的摩擦熔融物)。该假玄武玻璃形成的位置极浅,且产生于非固结的、富流体的断层泥中。从岩心来看,断层面可见镜面构造和同震擦痕。微构造分析显示,该假玄武玻璃主要由石英碎屑和由长石与黏土矿物熔融的非晶质基质组成,基质中发育众多不规则的微裂隙,并可见流动构造。化学成分分析显示,其基质富Ba且被重晶石(BaSO4)小细脉切割,为同震及震后流体存在的证据。由于假玄武玻璃在流体存在的条件下会快速蚀变,且龙门山地区大地震复发周期为3000~6000年,因而这些完全未被蚀变的新鲜假玄武玻璃可能是最近一次大地震,即2008年汶川大地震的产物。针对钻孔中断层泥进行的高速摩擦试验,证实了在钻孔732m深度发生地震滑动的条件下确实会产生假玄武玻璃。因此WFSD-1钻孔732.6m的假玄武玻璃被认为是汶川地震的产物,代表了汶川地震主滑动带位置。这是首次在自然界中发现浅部含水断层泥摩擦熔融形成假玄武玻璃的实例,不仅对认识汶川大地震的发震机制、断层强度、应力迁移与破裂传播具有重要意义,而且有助于我们认识断裂带内浅部脆性区域的力学属性、岩石变形环境和变形机制,促进对地震滑动机制和破裂过程的认识。

  • 加载中
  • 图 1 

    汶川地震断裂带科学钻探1号孔(WFSD-1)的构造背景和断裂岩特征(据Wang et al., 2023)

    Figure 1. 

    Tectonic setting and fault rocks in the first borehole of the Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-1) (after Wang et al., 2023)

    图 2 

    岩心样品、薄片切制及滑动带断裂岩组成特征

    Figure 2. 

    Characteristics of the studied core, the thin section preparation, and the fault rocks near the PSZ

    图 3 

    732.6m处不同断裂岩的微构造特征(偏光显微镜下)

    Figure 3. 

    Microstructures of the fault rocks at 732.6m (under polarized microscope)

    图 4 

    732.6m处不同断裂岩在扫描电镜下显微构造特征

    Figure 4. 

    Microstructures of the fault rocks at 732.6m under a scanning electron microscope

    图 5 

    假玄武玻璃基质在透射电镜下的显微构造特征

    Figure 5. 

    Microstructural characterization of pseudotachylyte under transmission electron microscopy

    图 6 

    WFSD-1中断裂岩的XRD谱图

    Figure 6. 

    X-ray diffraction patterns of the fault rocks from the WFSD-1 drilling cores

    图 7 

    断层泥摩擦实验样品架及剪切后样品

    Figure 7. 

    Gouge sample holder for frictional experiments and deformed fault gouges

    图 8 

    WFSD-1断层泥高速摩擦实验数据和微观构造特征

    Figure 8. 

    Experimental data and microstructures of the sheared gouges in the WFSD-1

    图 9 

    大型剪切带主要地质和地震特征的综合模型(据Sibson, 1983; Scholz, 1988)

    Figure 9. 

    A synoptic shear zone model, illustrating the major geological and seismological features (after Sibson, 1983; Scholz, 1988)

    表 1 

    WFSD-1中断裂岩的矿物成分(wt%,半定量分析)

    Table 1. 

    Mineralogical composition (wt%, semi-quantitative analysis) of the fault rocks from WFSD-1

    样品号 WI-5 WI-9 WI-12 WI-17 WI-19 DH-11 DH-17 DH-20 DH-21
    深度(m) 704.06 706.73 708.20 719.43 728.30 732.10 732.46 732.54 732.58
    岩性 断层角砾岩 细粒断层角砾岩 断层泥
    石英 75 75 63 71 74 71 74 71 74
    钠长石 7 8 5 9 8 10 12 11 8
    钾长石 4 4 4 4 2 6 5 5 3
    白云母 3 4 11 5 3 3 2 2 2
    白云石 4 2 3 3 3 2 1 2 1
    铁白云石 1 2 3 2 2 2 2 6 3
    方解石 1 2 6 3 3 1 1 1 1
    绿泥石 3 3 6 3 3 2 2 2 2
    黄铁矿 3 2 4
    石膏 1 2
    重晶石 1
    蒙脱石 < 1
    下载: 导出CSV

    表 2 

    岩石摩擦实验列表(所有实验均在20MPa正应力下进行)

    Table 2. 

    List of the rock frictional experiments (all experiments performed at 20MPa normal stress)

    实验编号 样品 样品号 质量 湿度 速度 剪切距离 样品架
    S1541 灰色角砾岩 W1-9 5g 室温湿度 1m/s 4.5m 碳化钨+钢
    S1542 深灰色角砾岩 W12 5g 室温湿度 1m/s 5.0m 碳化钨+钢
    S1543^ 灰色角砾岩 W1-9 8g 室温湿度 1m/s 5.0m 碳化钨+钢
    S1545^ 灰色角砾岩 W1-9 5.65g 室温湿度 1m/s 5.0m 岩石+特氟龙
    S1547^ 灰色角砾岩 W1-10 8g 加水20wt% 1m/s 3.0m 碳化钨+钢
    S1891^ 灰色角砾岩 DH1-8 8g 加水20wt% 1m/s 2.75m 碳化钨+钢
    注:^实验在10-5m/s条件下进行0.01m的预剪切滑动
    下载: 导出CSV
  •  

    Allen AR. 1979. Mechanism of frictional fusion in fault zones. Journal of Structural Geology, 1(3): 231-243 doi: 10.1016/0191-8141(79)90042-7

     

    Bao H, Ampuero JP, Meng LS, Fielding EJ, Liang CR, Milliner CWD, Feng T and Huang H. 2019. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12(3): 200-205 doi: 10.1038/s41561-018-0297-z

     

    Brantut N, Schubnel A, Corvisier J and Sarout J. 2010. Thermochemical pressurization of faults during coseismic slip. Journal of Geophysical Research: Solid Earth, 115(B5): B05134

     

    Brantut N. 2020. Dilatancy-induced fluid pressure drop during dynamic rupture: Direct experimental evidence and consequences for earthquake dynamics. Earth and Planetary Science Letters, 538: 116179 doi: 10.1016/j.epsl.2020.116179

     

    Burchfiel BC, Chen ZL, Yupinc L and Royden LH. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8): 661-735 doi: 10.1080/00206819509465424

     

    Chen JY, Yang XS, Duan QB, Shimamoto T and Spiers CJ. 2013. Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan fault during the 2008 Wenchuan earthquake: Inferences from experiments and modeling. Journal of Geophysical Research: Solid Earth, 118(8): 4145-4169 doi: 10.1002/jgrb.50260

     

    Clerc A, Renard F, Austrheim H and Jamtveit B. 2018. Spatial and size distributions of garnets grown in a pseudotachylyte generated during a lower crust earthquake. Tectonophysics, 733: 159-170 doi: 10.1016/j.tecto.2018.02.014

     

    Cowan DS. 1999. Do faults preserve a record of seismic slip? A field geologist's opinion. Journal of Structural Geology, 21(8-9): 995-1001 doi: 10.1016/S0191-8141(99)00046-2

     

    Cui JW, Lin WR, Wang LJ, Gao L, Huang Y, Wang W, Sun DS, Li ZF, Zhou CJ, Qian HS, Peng H, Xia KM and Li K. 2014. Determination of three-dimensional in situ stresses by anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 619-620: 123-132 doi: 10.1016/j.tecto.2013.09.013

     

    Densmore AL, Ellis MA, Li Y, Zhou RJ, Hancock GS and Richardson N. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26(4): TC4005

     

    Di Toro G, Hirose T, Nielsen S, Pennacchioni G and Shimamoto T. 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 311(5761): 647-649 doi: 10.1126/science.1121012

     

    Ferrand TP, Hilairet N, Incel S, Deldicque D, Labrousse L, Gasc J, Renner J, Wang YB, Green II HW and Schubnel A. 2017. Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications, 8: 15247 doi: 10.1038/ncomms15247

     

    Ferrand TP, Labrousse L, Eloy G, Fabbri o, Hilairet N and Schubnel A. 2018. Energy balance from a mantle pseudotachylyte, Balmuccia, Italy. Journal of Geophysical Research: Solid Earth, 123(5): 3943-3967 doi: 10.1002/2017JB014795

     

    Ferrand TP, Nielsen S, Labrousse L and Schubnel A. 2021. Scaling seismic fault thickness from the laboratory to the field. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020694 doi: 10.1029/2020JB020694

     

    Ferré EC, Meado AL, Geissman JW, Di Toro G, Spagnuolo E, Ueda T, Ashwal LD, Deseta N, Andersen TB, Filiberto J and Conder JA. 2017. Earthquakes in the mantle? Insights from rock magnetism of pseudotachylytes. Journal of Geophysical Research: Solid Earth, 122(11): 8769-8785 doi: 10.1002/2017JB014618

     

    Fialko Y and Khazan Y. 2005. Fusion by earthquake fault friction: Stick or slip? Journal of Geophysical Research: Solid Earth, 110(B12): B12407

     

    Fondriest M, Mecklenburgh J, Passelegue FX, Artioli G, Nestola F, Spagnuolo E, Rempe M and Di Toro G. 2020. Pseudotachylyte alteration and the rapid fade of earthquake scars from the geological record. Geophysical Research Letters, 47(22): e2020GL090020 doi: 10.1029/2020GL090020

     

    Godard V, Pik R, Lavé J, Cattin R, Tibari B, de Sigoyer J, Pubellier M and Zhu J. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from (U-Th)/He thermochronometry. Tectonics, 28(5): TC5009

     

    Godard V, Lavé J, Carcaillet J, Cattin R, Bourlès D and Zhu J. 2010. Spatial distribution of denudation in Eastern Tibet and regressive erosion of plateau margins. Tectonophysics, 492(1-4): 253-274 doi: 10.1016/j.tecto.2010.06.022

     

    Gomila R, Fondriest M, Jensen E, Spagnuolo E, Masoch S, Mitchell TM, Magnarini G, Bistacchi A, Mittempergher S, Faulkner D, Cembrano J and Di Toro G. 2021. Frictional melting in hydrothermal fluid-rich faults: Field and experimental evidence from the Bolfín Fault Zone (Chile). Geochemistry, Geophysics, Geosystems, 22(7): e2021GC009743 doi: 10.1029/2021GC009743

     

    Han R, Hirose T, Jeong GY, Ando JI and Mukoyoshi H. 2014. Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications. Geophysical Research Letters, 41(15): 5457-5466 doi: 10.1002/2014GL061246

     

    Hou LF, Ma SL, Shimamoto T, Chen JY, Yao L, Yang XS and Okimura Y. 2012. Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake. Earthquake Science, 25(3): 197-217 doi: 10.1007/s11589-012-0846-2

     

    Hung CC, Kuo LW, Spagnuolo E, Wang CC, Di Toro G, Wu WJ, Dong JJ, Lin W, Sheu HS, Yeh EC and Hsieh PS. 2019. Grain fragmentation and frictional melting during initial experimental deformation and implications for seismic slip at shallow depths. Journal of Geophysical Research: Solid Earth, 124(11): 11150-11169 doi: 10.1029/2019JB017905

     

    Jiao L, Klinger Y and Scholtès L. 2021. Fault segmentation pattern controlled by thickness of brittle crust. Geophysical Research Letters, 48(19): e2021GL093390 doi: 10.1029/2021GL093390

     

    Kirkpatrick JD, Shipton ZK and Persano C. 2009. Pseudotachylytes: Rarely Generated, Rarely Preserved, or Rarely Reported? Bulletin of the Seismological Society of America, 99(1): 382-388 doi: 10.1785/0120080114

     

    Kirkpatrick JD and Rowe CD. 2013. Disappearing ink: How pseudotachylytes are lost from the rock record. Journal of Structural Geology, 52: 183-198 doi: 10.1016/j.jsg.2013.03.003

     

    Kuo LW, Li HB, Smith SAF, Di Toro G, Suppe J, Song SR, Nielsen S, Sheu HS and Si LJ. 2014. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 42(1): 47-50 doi: 10.1130/G34862.1

     

    Kuo LW, Di Felice F, Spagnuolo E, Di Toro G, Song SR, Aretusini S, Li HB, Suppe J, Si JL and Wen CY. 2017. Fault gouge graphitization as evidence of past seismic slip. Geology, 45(11): 979-982 doi: 10.1130/G39295.1

     

    Kuo LW, Hung CC, Li HB, Aretusini S, Chen JY, Di Toro G, Spagnuolo E, Di Felice F, Wang H, Si JL and Sheu HS. 2022. Frictional properties of the Longmenshan fault belt gouges from WFSD-3 and implications for earthquake rupture propagation. Journal of Geophysical Research: Solid Earth, 127(5): e2022JB024081 doi: 10.1029/2022JB024081

     

    Li HB, Fu XF, Van der Woerd J, Si JL, Wang ZX, Hou LW, Qiu ZL, Li N, Wu FY, Xu ZQ and Tapponnier P. 2008. Co-seisimic surface rupture and dextral-slip oblique thrusting of the MS 8.0 Wenchuan earthquake. Acta Geologica Sinica, 82(12): 1623-1643 (in Chinese with English abstract)

     

    Li HB, Wang H, Xu ZQ, Si JL, Pei JL, Li TF, Huang Y, Song SR, Kuo LW, Sun ZM, Chevalier ML and Liu DL. 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584: 23-42 doi: 10.1016/j.tecto.2012.08.021

     

    Li WY and Cao SY. 2022. Formation mechanisms of pseudotachylyte in fault zone and significance of unsteady rheology. Geological Review, 68(3): 1006-1032 (in Chinese with English abstract)

     

    Li Y, Zhou RJ, Densmore AL, Ellis MA and Li B. 2006. Sedimentary responses to late Cenozoic thrusting and strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau. Acta Sedimentologica Sinica, 24(2): 153-164 (in Chinese with English abstract)

     

    Lin AM. 2008. Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes. Berlin: Springer, 1-384

     

    Liu JM and Dong SW. 2001. Advance and the status quo of the research on pseudotachylites. Geological Review, 47(1): 64-69 (in Chinese with English abstract)

     

    Magloughlin JF. 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustal levels: The cataclasite-pseudotachylyte connection. Tectonophysics, 204(3-4): 243-260 doi: 10.1016/0040-1951(92)90310-3

     

    Magloughlin JF and Spray JG. 1992. Frictional melting processes and products in geological materials: Introduction and discussion. Tectonophysics, 204(3-4): 197-204 doi: 10.1016/0040-1951(92)90307-R

     

    McKenzie D and Brune JN. 1972. Melting on fault planes during large earthquakes. Geophysical Journal International, 29(1): 65-78 doi: 10.1111/j.1365-246X.1972.tb06152.x

     

    Niemeijer A, Di Toro G, Nielsen S and Di Felice F. 2011. Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity. Journal of Geophysical Research: Solid Earth, 116(B7): B07404

     

    Otsuki K, Hirono T, Omori M, Sakaguchi M, Tanigawa W, Lin WR, Soh W and Rong SS. 2009. Analyses of pseudotachylyte from Hole-B of Taiwan Chelungpu Fault Drilling Project (TCDP): Their implications for seismic slip behaviors during the 1999 Chi-Chi earthquake. Tectonophysics, 469(1-4): 13-24 doi: 10.1016/j.tecto.2009.01.008

     

    Papa S, Spagnuolo E, Di Toro G, Cavallo A, Favero M, Camacho A and Pennacchioni G. 2021. Selective clast survival in an experimentally-produced pseudotachylyte. Journal of Structural Geology, 147: 104328 doi: 10.1016/j.jsg.2021.104328

     

    Pec M, Stünitz H, Heilbronner R, Drury M and De Capitani C. 2012. Origin of pseudotachylites in slow creep experiments. Earth and Planetary Science Letters, 355-356: 299-310 doi: 10.1016/j.epsl.2012.09.004

     

    Proctor B and Lockner DA. 2016. Pseudotachylyte increases the post-slip strength of faults. Geology, 44(12): 1003-1006 doi: 10.1130/G38349.1

     

    Rice JR. 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5): B05311

     

    Rowe CD, Moore JC, Meneghini F and McKeirnan AW. 2005. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 33(12): 937-940 doi: 10.1130/G21856.1

     

    Scambelluri M, Pennacchioni G, Gilio M, Bestmann M, Plümper O and Nestola F. 2017. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release. Nature Geoscience, 10(12): 960-966 doi: 10.1038/s41561-017-0010-7

     

    Scholz CH. 1988. The brittle-plastic transition and the depth of seismic faulting. Geologische Rundschau, 77(1): 319-328 doi: 10.1007/BF01848693

     

    Shen ZK, Sun JB, Zhang PZ, Wan YG, Wang M, Bürgmann R, Zeng YH, Gan WJ, Liao H and Wang QL. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2(10): 718-724 doi: 10.1038/ngeo636

     

    Sibson RH. 1975. Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal International, 43(3): 775-794 doi: 10.1111/j.1365-246X.1975.tb06195.x

     

    Sibson RH. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3): 191-213 doi: 10.1144/gsjgs.133.3.0191

     

    Sibson RH. 1983. Continental fault structure and the shallow earthquake source. Journal of the Geological Society, 140(5): 741-767 doi: 10.1144/gsjgs.140.5.0741

     

    Sibson RH and Toy VG. 2006. The habitat of fault-generated pseudotachylyte: Presence vs. absence of friction-melt. In: Abercrombie R, McGarr A, Di Toro G and Kanamori H (eds.). Earthquakes: Radiated Energy and the Physics of Faulting. Washington: American Geophysical Union, 153-166

     

    Smith SAF, Di Toro G, Kim S, Ree JH, Nielsen S, Billi A and Spiess R. 2013. Coseismic recrystallization during shallow earthquake slip. Geology, 41(1): 63-66 doi: 10.1130/G33588.1

     

    Spray JG. 1995. Pseudotachylyte controversy: Fact or friction? Geology, 23(12): 1119-1122 doi: 10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2

     

    Spray JG. 2010. Frictional melting processes in planetary materials: From hypervelocity impact to earthquakes. Annual Review of Earth and Planetary Sciences, 38: 221-254 doi: 10.1146/annurev.earth.031208.100045

     

    Sulem J and Famin V. 2009. Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects. Journal of Geophysical Research: Solid Earth, 114(B3): B03309

     

    Togo T, Yao L, Ma SL and Shimamoto T. 2016. High-velocity frictional strength of Longmenshan fault gouge and its comparison with an estimate of friction from the temperature anomaly in WFSD-1 drill hole. Journal of Geophysical Research: Solid Earth, 121(7): 5328-5348 doi: 10.1002/2016JB012880

     

    Ueda T, Obata M, Di Toro G, Kanagawa K and Ozawa K. 2008. Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies. Geology, 36(8): 607-610 doi: 10.1130/G24739A.1

     

    Wallace PA, De Angelis SH, Hornby AJ, Kendrick JE, Clesham S, von Aulock FW, Hughes A, Utley JEP, Hirose T, Dingwell DB and Lavallée Y. 2019. Frictional melt homogenisation during fault slip: Geochemical, textural and rheological fingerprints. Geochimica et Cosmochimica Acta, 255: 265-288 doi: 10.1016/j.gca.2019.04.010

     

    Wang E, Kirby E, Furlong KP, van Soest M, Xu G, Shi X, Kamp PJJ and Hodges KV. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645 doi: 10.1038/ngeo1538

     

    Wang H, Li HB, Si JL and Huang Y. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica Sinica, 29(6): 2048-2060 (in Chinese with English abstract)

     

    Wang H, Li HB, Zhang L, Sun ZM, Si JL and Pei JL. 2018. Pseudotachylytes in the Longmen Shan fault zone and fault weakening mechanisms. Chinese Journal of Geophysics, 61(5): 1698-1714 (in Chinese with English abstract)

     

    Wang H, Li HB, Zhang L, Zheng Y, Si JL and Sun ZM. 2019. Paleoseismic slip records and uplift of the Longmen Shan, eastern Tibetan Plateau. Tectonics, 38(1): 354-373 doi: 10.1029/2018TC005278

     

    Wang H, Li HB, Di Toro G, Kuo LW, Spagnuolo E, Aretusini S, Si JL and Song SR. 2023. Melting of fault gouge at shallow depth during the 2008 MW 7.9 Wenchuan earthquake, China. Geology, 51(4): 345-350 doi: 10.1130/G50810.1

     

    Wang S and Zhu SB. 2022. Finite element method simulations of the influences of fault rupture velocities on ground motions and seismic hazards. Chinese Journal of Geophysics, 65(2): 686-697 (in Chinese with English abstract)

     

    Wang Y, Ma SL, Shimamoto T, Yao L, Chen JY, Yang XS, He HL, Dang JX, Hou LF and Togo T. 2014. Internal structures and high-velocity frictional properties of Longmenshan fault zone at Shenxigou activated during the 2008 Wenchuan earthquake. Earthquake Science, 27(5): 499-528 doi: 10.1007/s11589-014-0096-6

     

    Wenk HR. 1978. Are pseudotachylites products of fracture or fusion? Geology, 6(8): 507-511 doi: 10.1130/0091-7613(1978)6<507:APPOFO>2.0.CO;2

     

    Xu XW, Wen XZ, Ye JQ, Ma BQ, Chen J, Zhou RJ, He HL, Tian QJ, He YL, Wang ZC, Sun ZM, Feng XJ, Yu GH, Chen LC, Chen GH, Yu SE, Ran YK, Li XG, Li CX and An YF. 2008. The MS 8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology, 30(3): 597-629 (in Chinese with English abstract)

     

    Xu ZQ, Hou LW and Wang ZX. 1992. Orogenic Processes of the Songpan-Ganze Orogenic Belt of China. Beijing: Geological Publishing House (in Chinese)

     

    Xue L, Li HB, Brodsky EE, Xu ZQ, Kano Y, Wang H, Mori JJ, Si JL, Pei JL, Zhang W, Yang G, Sun ZM and Huang Y. 2013. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science, 340(6140): 1555-1559 doi: 10.1126/science.1237237

     

    Yang T, Chen JY, Xu HR and Dekkers MJ. 2019. High-velocity friction experiments indicate magnetic enhancement and softening of fault gouges during seismic slip. Journal of Geophysical Research: Solid Earth, 124(1): 26-43 doi: 10.1029/2018JB016341

     

    Yao L, Ma SL, Shimamoto T and Togo T. 2013. Structures and high-velocity frictional properties of the Pingxi Fault zone in the Longmenshan Fault system, Sichuan, China, activated during the 2008 Wenchuan Earthquake. Tectonophysics, 599: 135-156 doi: 10.1016/j.tecto.2013.04.011

     

    Yao L, Ma SL, Platt JD, Niemeijer AR and Shimamoto T. 2016. The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities. Geology, 44(1): 63-66 doi: 10.1130/G37310.1

     

    Yuan J and Zhu SB. 2017. Numerical simulation of seismic supershear rupture process facilitated by a fault stepover. Chinese Journal of Geophysics, 60(1): 212-224 (in Chinese with English abstract)

     

    Yue H, Shen ZK, Zhao ZY, Wang T, Cao BN, Li Z, Bao XW, Zhao L, Song XD, Ge ZX, Ren CM, Lu WF, Zhang Y, Liu-Zeng J, Wang M, Huang QH, Zhou SY and Xue L. 2022. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 119(23): e2116445119

     

    Zhang JJ and Zheng YD. 1995. A general survey of pseudotachylyte and its formation process and mechanism. Geological Science and Technology Information, 14(4): 22-28 (in Chinese with English abstract)

     

    Zhang PZ, Wen XZ, Shen ZK and Chen JH. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. The Annual Review of Earth and Planetary Sciences, 38: 353-382 doi: 10.1146/annurev-earth-040809-152602

     

    Zhang PZ. 2013. Beware of slowly slipping faults. Nature Geoscience, 6(5): 323-324 doi: 10.1038/ngeo1811

     

    Zhong X, Petley-Ragan AJ, Incel SHM, Dabrowski M, Andersen NH and Jamtveit B. 2021. Lower crustal earthquake associated with highly pressurized frictional melts. Nature Geoscience, 14(7): 519-525 doi: 10.1038/s41561-021-00760-x

     

    Zhu SB, Yuan J and Miao M. 2017. Dynamic mechanisms for supershear rupture processes of the Yushu earthquake (MS=7.1). Chinese Journal of Geophysics, 60(10): 3832-3843 (in Chinese with English abstract)

     

    Zhu SB and Cui ZF. 2022. Why are there so few supershear rupture earthquakes in real-world nature? Chinese Journal of Geophysics, 65(1): 51-66 (in Chinese with English abstract)

     

    李海兵, 付小方, Van der Woerd J, 司家亮, 王宗秀, 侯立玮, 邱祝礼, 李宁, 吴富峣, 许志琴, Tapponnier P. 2008. 汶川地震(MS 8.0)地表破裂及其同震右旋斜向逆冲作用. 地质学报, 82(12): 1623-1643 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200812004.htm

     

    李文元, 曹淑云. 2022. 断层带中假玄武玻璃成因机制及非稳态流变意义. 地质论评, 68(3): 1006-1032 doi: 10.16509/j.georeview.2022.01.081

     

    李勇, 周荣军, Densmore AL, Ellis MA, 黎兵. 2006. 青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应. 沉积学报, 24(2): 153-164 https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200602000.htm

     

    刘建民, 董树文. 2001. 假玄武玻璃的研究进展与现状. 地质论评, 47(1): 64-69 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200101011.htm

     

    王焕, 李海兵, 司家亮, 黄尧. 2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报, 29(6): 2048-2060 http://www.ysxb.ac.cn/article/id/aps_20130614

     

    王焕, 李海兵, 张蕾, 孙知明, 司家亮, 裴军令. 2018. 龙门山断裂带假玄武玻璃特征及断层弱化机制的探讨. 地球物理学报, 61(5): 1698-1714 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805004.htm

     

    王松, 朱守彪. 2022. 断层破裂速度对地震动及其地震灾害影响的有限单元法模拟. 地球物理学报, 65(2): 686-697 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202202020.htm

     

    徐锡伟, 闻学泽, 叶建青, 马保起, 陈杰, 周荣军, 何宏林, 田勤俭, 何玉林, 王志才, 孙昭民, 冯希杰, 于贵华, 陈立春, 陈桂华, 于慎鄂, 冉勇康, 李细光, 李陈侠, 安艳芬. 2008. 汶川MS 8.0地震地表破裂带及其发震构造. 地震地质, 30(3): 597-629 https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200803003.htm

     

    许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社

     

    袁杰, 朱守彪. 2017. 断层阶区对产生超剪切地震破裂的促进作用. 地球物理学报, 60(1): 212-224 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701019.htm

     

    张进江, 郑亚东. 1995. 假玄武玻璃及其形成过程和机制综述. 地质科技情报, 14(4): 22-28 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ504.006.htm

     

    朱守彪, 袁杰, 缪淼. 2017. 青海玉树地震(MS=7.1)产生超剪切破裂过程的动力学机制研究. 地球物理学报, 60(10): 3832-3843 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201710013.htm

     

    朱守彪, 崔泽飞. 2022. 为什么自然界中超剪切破裂的地震是如此之少? 地球物理学报, 65(1): 51-66 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202201005.htm

  • 加载中

(9)

(2)

计量
  • 文章访问数:  810
  • PDF下载数:  132
  • 施引文献:  0
出版历程
收稿日期:  2023-08-01
修回日期:  2023-10-08
刊出日期:  2023-12-01

目录