板内玄武岩来源于再循环碳酸盐化榴辉岩的地球化学证据: 以四子王旗新生代玄武岩为例

吴亚东, 杨进辉, 朱昱升. 2023. 板内玄武岩来源于再循环碳酸盐化榴辉岩的地球化学证据: 以四子王旗新生代玄武岩为例. 岩石学报, 39(9): 2583-2597. doi: 10.18654/1000-0569/2023.09.04
引用本文: 吴亚东, 杨进辉, 朱昱升. 2023. 板内玄武岩来源于再循环碳酸盐化榴辉岩的地球化学证据: 以四子王旗新生代玄武岩为例. 岩石学报, 39(9): 2583-2597. doi: 10.18654/1000-0569/2023.09.04
WU YaDong, YANG JinHui, ZHU YuSheng. 2023. Geochemical evidence for the generation of intraplate basalts from a carbonated eclogite source: A case study from Cenozoic Siziwangqi basalts. Acta Petrologica Sinica, 39(9): 2583-2597. doi: 10.18654/1000-0569/2023.09.04
Citation: WU YaDong, YANG JinHui, ZHU YuSheng. 2023. Geochemical evidence for the generation of intraplate basalts from a carbonated eclogite source: A case study from Cenozoic Siziwangqi basalts. Acta Petrologica Sinica, 39(9): 2583-2597. doi: 10.18654/1000-0569/2023.09.04

板内玄武岩来源于再循环碳酸盐化榴辉岩的地球化学证据: 以四子王旗新生代玄武岩为例

  • 基金项目:

    本文受国家自然科学基金项目(42288201)资助

详细信息
    作者简介:

    吴亚东, 男, 1991年生, 博士后, 矿物学、岩石学、矿床学专业, E-mail: yadongwu@mail.iggcas.ac.cn

  • 中图分类号: P588.145;P597.2

Geochemical evidence for the generation of intraplate basalts from a carbonated eclogite source: A case study from Cenozoic Siziwangqi basalts

  • 本文对中国东部中新世四子王旗玄武岩开展了详细的全岩和橄榄石主、微量元素及全岩Sr-Nd-Pb-Hf-Mg同位素研究, 据此探讨它们的成因及源区性质。研究发现, 四子王旗玄武岩具有类似于高μ(HIMU)型地幔起源熔体的微量元素分布特征, Zr、Hf、Ti的负异常, 高的Zr/Hf比值(Zr/Hf=49.3~54.8), 以及低于正常地幔范围的δ26Mg值(-0.51‰~-0.49‰), 表明其来源于碳酸盐化地幔源区。它们还具有低的Sc含量(10.1×10-6~10.5×10-6)和高的Gd/Yb比值(8.7~9.4), 结合它们橄榄石斑晶低的Fo值, 高的NiO含量和Fe/Mn比值, 揭示其母岩浆为碳酸盐化榴辉岩部分熔融产生。四子王旗玄武岩具有亏损的Sr-Nd-Hf同位素(87Sr/86Sr=0.70370~0.70449;εNd=+6.3~+6.4;εHf=+9.7~+10.3), 以及较低的Pb同位素组成(206Pb/204Pb=17.94, 207Pb/204Pb=15.44, 208Pb/204Pb=37.89), 指示它们源区为年轻的再循环洋壳物质, 很有可能来自于滞留的西太平洋板片。四子王旗玄武岩位于南北重力梯度带以西并远离海沟, 意味着滞留的西太平洋板片在物质上对上覆地幔的影响范围较之前认识的要更广。

  • 加载中
  • 图 1 

    中国东部新生代玄武岩分布及四子王旗玄武岩采样点

    Figure 1. 

    Distribution of Cenozoic basalts in eastern China and sampling location of the Siziwangqi basalts

    图 2 

    四子王旗玄武岩典型照片

    Figure 2. 

    Typical photographs of the Siziwangqi basalts

    图 3 

    四子王旗玄武岩TAS图解(a, 据Le Bas et al., 1986)和原始地幔标准化微量元素蛛网图(b,标准化值据McDonough and Sun, 1995)

    Figure 3. 

    Total alkali versus SiO2 diagram (a, after Le Bas et al., 1986) and primitive mantle-normalized trace element spider diagram (b, normalization value after McDonough and Sun, 1995) for the Siziwangqi basalts

    图 4 

    四子王旗玄武岩同位素组成特征

    Figure 4. 

    Isotopic characteristics of the Siziwangqi basalts

    图 5 

    四子王旗玄武岩微量元素比值和同位素组成关系图解

    Figure 5. 

    Correlation diagrams of trace element ratios and isotopic compositions of the Siziwangqi basalts

    图 6 

    典型的四子王旗玄武岩橄榄石斑晶(a)和捕掳晶(b)成分剖面

    Figure 6. 

    Typical compositional profiles of olivine phenocryst (a) and xenocryst (b) of the Siziwangqi basalts

    图 7 

    四子王旗玄武岩橄榄石斑晶成分图

    Figure 7. 

    Diagrams of olivine phenocryst compositions of the Siziwangqi basalts

    图 8 

    四子王旗玄武岩全岩Mg#值和橄榄石斑晶核部Fo值图解

    Figure 8. 

    Diagram of host whole-rock Mg# values versus Fo contents of olivine core for Siziwangqi basalts

    图 9 

    四子王旗玄武岩的Gd/Yb和Sc组成以及与模拟的碳酸盐化橄榄岩(a)和碳酸盐化辉石岩(b)熔体对比

    Figure 9. 

    Gd/Yb and Sc in Siziwangqi basalts, compared with modeled values of carbonated peridotite (a) and carbonated pyroxenite (b)

    图 10 

    四子王旗玄武岩原生熔体成分与实验获得的碳酸盐化辉石岩起源熔体成分在从透辉石[Di]投影的橄榄石(Ol)-霞石+钾霞石+钙铝尖晶石(NeKsCal)-石英(Q)相图中对比

    Figure 10. 

    Comparison between Siziwangqi primary melt compositions and experimental partial melts of carbonated pyroxenite in the phase diagram of olivine-nepheline+kalsilite+calcium-aluminum spinel+quartz projected from diopside

    图 11 

    四子王旗玄武岩源区再循环洋壳组分Pb模式演化蒙特卡洛模拟结果

    Figure 11. 

    Results of Monte Carlo simulations for Pb model evolution of the recycled oceanic crust in the source of Siziwangqi basalts

    表 1 

    四子王旗新生代玄武岩的主量元素(wt%)、微量元素(×10-6)和Sr-Nd-Pb-Hf-Mg同位素组成

    Table 1. 

    The measured whole rock major element (wt%), trace element (×10-6), and Sr-Nd-Pb-Hf-Mg isotope compositions of Cenozoic Siziwangqi basalts

    样品号 19JH127 19JH128 样品号 19JH127 19JH128 样品号 19JH127 19JH128
    SiO2 44.31 44.00 Y 24.7 24.9 87Sr/86Sr 0.703703 0.704494
    TiO2 2.39 2.38 Zr 355 344 1SE 0.000009 0.000005
    Al2O3 14.16 14.14 Nb 99.8 97.4 143Nd/144Nd 0.512951 0.512959
    Fe2O3T 12.04 12.11 Ba 385 390 1SE 0.000004 0.000003
    MnO 0.16 0.16 La 67.0 68.5 εNd 6.3 6.4
    176Hf/177Hf 0.283076 0.283059
    MgO 7.95 7.80 Ce 118 126 1SE 0.000004 0.000003
    CaO 7.42 7.52 Pr 14.9 15.1 εHf 10.3 9.7
    Na2O 5.19 5.12 Nd 59.6 60.7 ΔεHf -0.6 -1.5
    K2O 2.02 2.28 Sm 11.6 12.2 Ua 0.554 0.581
    Tha 2.44 2.36
    P2O5 1.41 1.43 Eu 3.76 3.76 Pba 1.36 1.43
    LOI 2.17 1.97 Gd 10.1 10.0 206Pb/204Pba 17.940 17.940
    Total 99.21 98.91 Tb 1.31 1.41 1SE 0.0003 0.0003
    Li 10.8 10.6 Dy 6.40 6.48 207Pb/204Pba 15.442 15.443
    Be 3.9 4.0 Ho 0.97 0.99 1SE 0.0003 0.0003
    Sc 10.5 10.1 Er 1.81 2.07 208Pb/204Pba 37.892 37.893
    Ti 14615 14156 Tm 0.23 0.23 1SE 0.008 0.007
    V 123 120 Yb 1.06 1.16 206Pb/204Pbi 17.855 17.855
    Cr 126 129 Lu 0.14 0.15 207Pb/204Pbi 15.438 15.439
    Co 43.3 41.9 Hf 6.47 6.98 208Pb/204Pbi 37.767 37.779
    Ni 143 131 Ta 5.90 6.11 δ25Mg(‰) -0.26 -0.25
    Zn 152 148 Pb 3.85 3.99 2SDb 0.03 0.01
    Rb 25.9 40.6 Th 7.30 7.34 δ26Mg(‰) -0.51 -0.49
    Sr 1537 1725 U 2.35 2.33 2SDb 0.02 0.05
    注:a淋滤后残余样品粉末U-Th-Pb含量(×10-6)和Pb同位素比值;b2SD=重复3次测量同一样品溶液获得的两倍标准差
    下载: 导出CSV

    表 2 

    估计的四子王旗玄武岩原生岩浆主量元素(wt%)和Mg同位素组成

    Table 2. 

    Estimated major element (wt%) and Mg isotopic compositions of primary melt of Siziwangqi basalts

    样品号 19JH127 19JH128 平均值 样品号 19JH127 19JH128 平均值*
    SiO2 46.31 46.03 46.17 Na2O 5.66 5.59 5.62
    TiO2 2.60 2.60 2.60 K2O 2.21 2.49 2.35
    Al2O3 15.36 15.36 15.36
    FeOT 11.46 11.59 11.52 P2O5 1.53 1.56 1.55
    MnO 0.17 0.17 0.17 Mg# 55 55 55
    MgO 6.70 6.77 6.74 δ26Mg(‰) -0.56 -0.53 -0.55
    CaO 8.02 8.15 8.09 2SD 0.04 0.07 0.03
    注:*对于δ26Mg,为加权平均值
    下载: 导出CSV
  •  

    Alt JC and Teagle DAH. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10): 1527-1535 doi: 10.1016/S0016-7037(99)00123-4

     

    An YJ, Wu F, Xiang YX, Nan XY, Yu X, Yang JH, Yu HM, Xie LW and Huang F. 2014. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chemical Geology, 390: 9-21 doi: 10.1016/j.chemgeo.2014.09.014

     

    Batanova VG, Thompson JM, Danyushevsky LV, Portnyagin MV, Garbe-Schönberg D, Hauri E, Kimura JI, Chang Q, Senda R, Goemann K, Chauvel C, Campillo S, Ionov DA and Sobolev AV. 2019. New olivine reference material for in situ microanalysis. Geostandards and Geoanalytical Research, 43(3): 453-473 doi: 10.1111/ggr.12266

     

    Bizimis M, Salters VJM and Dawson JB. 2003. The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 145(3): 281-300 doi: 10.1007/s00410-003-0452-3

     

    Cai RH, Liu JG, Pearson DG, Li DX, Xu Y, Liu SA, Chu ZY, Chen LH and Li SG. 2021. Oxidation of the deep big mantle wedge by recycled carbonates: Constraints from highly siderophile elements and osmium isotopes. Geochimica et Cosmochimica Acta, 295: 207-223 doi: 10.1016/j.gca.2020.12.019

     

    Chauvel C, Lewin E, Carpentier M, Arndt NT and Marini JC. 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nature Geoscience, 1(1): 64-67 doi: 10.1038/ngeo.2007.51

     

    Chen Y, Wu TR, Xu X and Zhang ST. 2004. Discovery of mantle xenoliths bearing Miocene potassium-rich olivine basalt and its significance in Siziwangqi Area, Inner Mongolia. Geological Journal of China Universities, 10(4): 586-593 (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7493.2004.04.013

     

    Dasgupta R, Hirschmann MM and Withers AC. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227(1-2): 73-85 doi: 10.1016/j.epsl.2004.08.004

     

    Dasgupta R, Hirschmann MM and Stalker K. 2006. Immiscible transition from carbonate-rich to silicate-rich melts in the 3GPa melting interval of eclogite+CO2 and genesis of silica-undersaturated ocean island lavas. Journal of Petrology, 47(4): 647-671 doi: 10.1093/petrology/egi088

     

    Dasgupta R, Hirschmann MM and Smith ND. 2007. Partial melting experiments of peridotite+CO2 at 3GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11): 2093-2124 doi: 10.1093/petrology/egm053

     

    Dasgupta R and Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters, 298(1-2): 1-13 doi: 10.1016/j.epsl.2010.06.039

     

    Davis FA, Humayun M, Hirschmann MM and Cooper RS. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3GPa. Geochimica et Cosmochimica Acta, 104: 232-260 doi: 10.1016/j.gca.2012.11.009

     

    Falloon TJ and Green DH. 1987. Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10kbar: Implications for the origin of primitive MORB glasses. Mineralogy and Petrology, 37(3-4): 181-219 doi: 10.1007/BF01161817

     

    Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. Journal of Petrology, 32(4): 765-810 doi: 10.1093/petrology/32.4.765

     

    Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518 doi: 10.1029/2012GC004334

     

    Gerbode C and Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9GPa and genesis of HIMU ocean island basalts. Journal of Petrology, 51(10): 2067-2088

     

    Gleeson MLM and Gibson SA. 2019. Crustal controls on apparent mantle pyroxenite signals in ocean-island basalts. Geology, 47(4): 321-324 doi: 10.1130/G45759.1

     

    Gordeychik B, Churikova T, Kronz A, Sundermeyer C, Simakin A and Wörner G. 2018. Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano. Scientific Reports, 8(1): 11775 doi: 10.1038/s41598-018-30133-1

     

    Gordeychik B, Churikova T, Shea T, Kronz A, Simakin A and Wörner G. 2021. Fo and Ni relations in olivine differentiate between crystallization and diffusion trends. Journal of Petrology, 61(9): egaa083 doi: 10.1093/petrology/egaa083

     

    Guo PY, Niu YL, Ye L, Liu JJ, Sun P, Cui HX, Zhang Y, Gao JP, Su L, Zhao JX and Feng YX. 2014. Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts. Lithos, 202-203: 37-54 doi: 10.1016/j.lithos.2014.04.024

     

    Guo PY, Niu YL, Sun P, Ye L, Liu JJ, Zhang Y, Feng YX and Zhao JX. 2016. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos, 240-243: 104-118 doi: 10.1016/j.lithos.2015.11.010

     

    Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. Journal of Petrology, 52(1): 113-146 doi: 10.1093/petrology/egq075

     

    Herzberg C, Cabral RA, Jackson MG, Vidito C, Day JMD and Hauri EH. 2014. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth and Planetary Science Letters, 396: 97-106 doi: 10.1016/j.epsl.2014.03.065

     

    Hoernle K, Tilton G, Le Bas MJ, Duggen S and Garbe-Schönberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142(5): 520-542 doi: 10.1007/s004100100308

     

    Hofmann AW. 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Carlson RW (ed. ). The Mantle and Core. Treatise on Geochemistry. Oxford: Elsevier-Pergamon: 61-101

     

    Jarrard RD. 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochemistry, Geophysics, Geosystems, 4(5): 8905 http://doc.paperpass.com/foreign/rgArti2003133242201.html

     

    Kelemen PB and Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences of the United States of America, 112(30): E3997-E4006

     

    Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A and Kamenetsky VS. 2012. An experimental study of carbonated eclogite at 3.5~5.5GPa: Implications for silicate and carbonate metasomatism in the cratonic mantle. Journal of Petrology, 53(4): 727-759 doi: 10.1093/petrology/egr078

     

    Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E and Kamenetsky VS. 2013. Melting and phase relations of carbonated eclogite at 9~21GPa and the petrogenesis of alkali-rich melts in the deep mantle. Journal of Petrology, 54(8): 1555-1583 doi: 10.1093/petrology/egt023

     

    Le Bas MJ, Maitre RL, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750 doi: 10.1093/petrology/27.3.745

     

    Li HY, Xu YG, Ryan JG, Huang XL, Ren ZY, Guo H and Ning ZG. 2016. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochimica et Cosmochimica Acta, 178: 1-19 doi: 10.1016/j.gca.2015.12.032

     

    Li SG, Yang W, Ke S, Meng XN, Tian HC, Xu LJ, He YS, Huang J, Wang XC, Xia QK, Sun WD, Yang XY, Ren ZY, Wei HQ, Liu YS, Meng FC and Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111-120 doi: 10.1093/nsr/nww070

     

    Liu SA, Wang ZZ, Li SG, Huang J and Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 444: 169-178 doi: 10.1016/j.epsl.2016.03.051

     

    Liu X, Zhao DP, Li SZ and Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth and Planetary Science Letters, 464: 166-174 doi: 10.1016/j.epsl.2017.02.024

     

    Liu XN, Hin RC, Coath CD, van Soest M, Melekhova E and Elliott T. 2022. Equilibrium olivine-melt Mg isotopic fractionation explains high δ26Mg values in arc lavas. Geochemical Perspectives Letters, 22: 42-47 doi: 10.7185/geochemlet.2226

     

    Mallik A and Dasgupta R. 2013. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3GPa and genesis of alkalic magmas. Journal of Petrology, 54(11): 2267-2300 doi: 10.1093/petrology/egt047

     

    Mallik A and Dasgupta R. 2014. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3GPa: Implications for mantle source characteristics of alkalic ocean island basalts. Geochemistry, Geophysics, Geosystems, 15(4): 1533-1557 doi: 10.1002/2014GC005251

     

    Mazza SE, Gazel E, Bizimis M, Moucha R, Béguelin P, Johnson EA, McAleer RJ and Sobolev AV. 2019. Sampling the volatile-rich transition zone beneath Bermuda. Nature, 569(7756): 398-403 doi: 10.1038/s41586-019-1183-6

     

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 doi: 10.1016/0009-2541(94)00140-4

     

    Müller RD, Seton M, Zahirovic S, Williams SE, Matthews KJ, Wright NM, Shephard GE, Maloney KT, Barnett-Moore N, Hosseinpour M, Bower DJ and Cannon J. 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44: 107-138 doi: 10.1146/annurev-earth-060115-012211

     

    Nebel O, Arculus RJ, van Westrenen W, Woodhead JD, JennerFE, Nebel-Jacobsen YJ, Wille M and Eggins SM. 2013. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook-Austral islands, suggest an Archean source component in the mantle transition zone. Geochimica et Cosmochimica Acta, 112: 87-101 doi: 10.1016/j.gca.2013.03.005

     

    Pertermann M, Hirschmann MM, Hametner K, Günther D and Schmidt MW. 2004. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochemistry, Geophysics, Geosystems, 5(5): Q05A01

     

    Plank T and Manning CE. 2019. Subducting carbon. Nature, 574(7778): 343-352 doi: 10.1038/s41586-019-1643-z

     

    Putirka KD. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1): 61-120 doi: 10.2138/rmg.2008.69.3

     

    Qian SP, Ren ZY, Zhang L, Hong LB and Liu JQ. 2015. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source. Chemical Geology, 401: 111-125 doi: 10.1016/j.chemgeo.2015.02.018

     

    Qian SP, Salters V, McCoy-West, AJ, Wu J, Rose-Koga EF, Nichols ARL, Zhang L, Zhou HY and Hoernle K. 2022. Highly heterogeneous mantle caused by recycling of oceanic lithosphere from the mantle transition zone. Earth and Planetary Science Letters, 593: 117679 doi: 10.1016/j.epsl.2022.117679

     

    Sakuyama T, Tian W, Kimura JI, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H and Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology, 359: 32-48 doi: 10.1016/j.chemgeo.2013.09.012

     

    Salters VJM and Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07

     

    Sobolev AV, Hofmann AW, Sobolev SV and Nikogosian IK. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597 doi: 10.1038/nature03411

     

    Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417 doi: 10.1126/science.1138113

     

    Stracke A, Bizimis M and Salters VJ. 2003. Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 4(3): 8003

     

    Stracke A. 2012. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330-331: 274-299 doi: 10.1016/j.chemgeo.2012.08.007

     

    Stracke A, Tipper ET, Klemme S and Bizimis M. 2018. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochimica et Cosmochimica Acta, 226: 192-205 doi: 10.1016/j.gca.2018.02.002

     

    Su B, Chen Y, Mao Q, Zhang D, Jia LH and Guo S. 2019a. Minor elements in olivine inspect the petrogenesis of orogenic peridotites. Lithos, 344-345: 207-216 doi: 10.1016/j.lithos.2019.06.029

     

    Su BX, Hu Y, Teng FZ, Xiao Y, Zhang HF, Sun Y, Bai Y, Zhu B, Zhou XH and Ying JF. 2019b. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism. Earth and Planetary Science Letters, 522: 79-86 doi: 10.1016/j.epsl.2019.06.016

     

    Sun Y, Teng FZ and Pang KN. 2021. The presence of paleo-Pacific slab beneath northwest North China Craton hinted by low-δ26Mg basalts at Wulanhada. Lithos, 386-387: 106009 doi: 10.1016/j.lithos.2021.106009

     

    Tang YJ, Zhang HF and Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3-4): 309-327 doi: 10.1016/j.chemgeo.2006.03.013

     

    Teng FZ, Dauphas N, Helz RT, Gao S and Huang SC. 2011. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth and Planetary Science Letters, 308(3-4): 317-324 doi: 10.1016/j.epsl.2011.06.003

     

    Teng FZ. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287 doi: 10.2138/rmg.2017.82.7

     

    Thomson AR, Walter MJ, Kohn SC and Brooker RA. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529(7584): 76-79 doi: 10.1038/nature16174

     

    Vervoort JD, Plank T and Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926 doi: 10.1016/j.gca.2011.07.046

     

    Wang SJ, Teng FZ and Scott JM. 2016. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochimica et Cosmochimica Acta, 185: 78-87 doi: 10.1016/j.gca.2016.01.007

     

    Wang XJ, Chen LH, Hanyu T, Zhong Y, Shi JH, Liu XW, Kawabata H, Zeng G and Xie LW. 2021. Magnesium isotopic fractionation during basalt differentiation as recorded by evolved magmas. Earth and Planetary Science Letters, 565: 116954 doi: 10.1016/j.epsl.2021.116954

     

    Wang ZZ and Liu SA. 2021. Evolution of intraplate alkaline to tholeiitic basalts via interaction between carbonated melt and lithospheric mantle. Journal of Petrology, 62(4): egab025 doi: 10.1093/petrology/egab025

     

    Weaver BL. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397 doi: 10.1016/0012-821X(91)90217-6

     

    Wei W, Xu JD, Zhao DP and Shi YL. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. Journal of Asian Earth Sciences, 60: 88-103 doi: 10.1016/j.jseaes.2012.08.001

     

    Weiss Y, Class C, Goldstein SL and Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537(7622): 666-670 doi: 10.1038/nature19113

     

    Willbold M and Stracke A. 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 7(4): Q04004

     

    Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72 doi: 10.1016/j.epsl.2004.12.005

     

    Xia QK, Liu J, Kovács I, Hao YT, Li P, Yang XZ, Chen H and Sheng YM. 2019. Water in the upper mantle and deep crust of eastern China: Concentration, distribution and implications. National Science Review, 6(1): 125-144 doi: 10.1093/nsr/nwx016

     

    Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M and Chen HL. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507 doi: 10.1146/annurev-earth-060614-105254

     

    Xiao Y, Yuan M, Su BX, Chen C, Bai Y, Ke S, Sun Y and Robinson PT. 2023. The chromite crisis in the evolution of continental magmas and the initial high δ26Mg reservoir. Journal of Petrology, 64(4): egad019 doi: 10.1093/petrology/egad019

     

    Xu R, Liu YS, Wang XH, Zong KQ, Hu ZC, Chen HH and Zhou L. 2017. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 274-275: 383-396 doi: 10.1016/j.lithos.2016.12.024

     

    Xu R, Liu YS, Wang XC, Foley SF, Zhang YF and Yuan HY. 2020. Generation of continental intraplate alkali basalts and implications for deep carbon cycle. Earth-Science Reviews, 201: 103073 doi: 10.1016/j.earscirev.2019.103073

     

    Xu R, Liu YS, Lambart S, Hoernle K, Zhu YT, Zou ZQ, Zhang JB, Wang ZC, Li M, Moynier F, Zong KQ, Chen HH and Hu ZC. 2022. Decoupled Zn-Sr-Nd isotopic composition of continental intraplate basalts caused by two-stage melting process. Geochimica et Cosmochimica Acta, 326: 234-252 doi: 10.1016/j.gca.2022.03.014

     

    Xu R, Liu YS, Zhang YF, Zou ZQ and Zhang JB. 2022. Carbonated eclogite in the mantle source of intraplate alkaline basalts. Acta Petrologica Sinica, 38(12): 3771-3784 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.12.15

     

    Xu YG, Li HY, Hong LB, Ma L, Ma Q and Sun MD. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China (Earth Sciences), 61(7): 869-886 doi: 10.1007/s11430-017-9192-y

     

    Xu Z, Zhao ZF and Zheng YF. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146-147: 202-217 doi: 10.1016/j.lithos.2012.05.019

     

    Yang YH, Zhang HF, Wu FY, Xie LW and Zhang YB. 2005. Accurate measurement of strontium isotopic composition by Neptune multiple collector inductively coupled plasma mass spectrometry. Journal of Chinese Mass Spectrometry Society, 26(4): 215-221 (in Chinese with English abstract) doi: 10.3969/j.issn.1004-2997.2005.04.006

     

    Yang YH, Zhang HF, Liu Y, Xie LW, Qi CS and Tu XL. 2007a. One column procedure for Hf purification in geological samples using anion exchange chromatography and its isotopic analyses by MC-ICP-MS. Acta Petrologica Sinica, 23(2): 227-232 (in Chinese with English abstract)

     

    Yang YH, Zhang HF, Xie LW and Wu FY. 2007b. Accurate measurement of neodymium isotopic composition using Neptune multiple collector inductively coupled plasma mass spectrometry. Chinese Journal of Analytical Chemistry, 35(1): 71-74 (in Chinese with English abstract)

     

    Zeng G, Chen LH, Xu XS, Jiang SY and Hofmann AW. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1-2): 35-45 doi: 10.1016/j.chemgeo.2010.02.009

     

    Zhang GL, Wang S, Zhang J, Zhan MJ and Zhao ZH. 2020. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume. Geochimica et Cosmochimica Acta, 290: 391-407 doi: 10.1016/j.gca.2020.09.018

     

    Zhang HT, Zhang HF and Zou DY. 2021. Comprehensive refertilization of the Archean-Paleoproterozoic lithospheric mantle beneath the northwestern North China Craton: Evidence from in situ Sr isotopes of the Siziwangqi peridotites. Lithos, 380-381: 105822 doi: 10.1016/j.lithos.2020.105822

     

    Zhang WH, Zhang HF, Fan WM, Han BF and Zhou MF. 2012. The genesis of Cenozoic basalts from the Jining area, northern China: Sr-Nd-Pb-Hf isotope evidence. Journal of Asian Earth Sciences, 61: 128-142 doi: 10.1016/j.jseaes.2012.09.010

     

    Zheng YF. 2008. The research progress of UHP metamorphism and continental collision: Take Dabie-Sulu orogen for example. Chinese Science Bulletin, 53(18): 2129-2152 (in Chinese) doi: 10.1360/csb2008-53-18-2129

     

    Zhou XH and Armstrong RL. 1982. Cenozoic volcanic rocks of eastern China: Secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 58(3): 301-329 doi: 10.1016/0012-821X(82)90083-8

     

    Zhong Y, Chen LH, Wang XJ, Zhang GL, Xie LW and Zeng G. 2017. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth and Planetary Science Letters, 463: 127-135 doi: 10.1016/j.epsl.2017.01.040

     

    Zhu RX and Xu YG. 2019. The subduction of the West Pacific plate and the destruction of the North China Craton. Science China (Earth Sciences), 62(9): 1340-1350 doi: 10.1007/s11430-018-9356-y

     

    Zou ZQ, Wang ZC, Foley S, Xu R, Geng XL, Liu YN, Liu YS and Hu ZC. 2022. Origin of low-MgO primitive intraplate alkaline basalts from partial melting of carbonate-bearing eclogite sources. Geochimica et Cosmochimica Acta, 324: 240-261 doi: 10.1016/j.gca.2022.02.022

     

    陈燕, 吴泰然, 许绚, 张双涛. 2004. 内蒙古四子王旗东八号中新世含深源捕虏体富钾橄榄玄武岩的发现及其意义. 高校地质学报, 10(4): 586-593 doi: 10.3969/j.issn.1006-7493.2004.04.013

     

    徐荣, 刘勇胜, 张艳飞, 邹宗琪, 张军波. 2022. 碳酸盐化榴辉岩对板内碱性玄武岩源区的贡献. 岩石学38(12): 3771-3784 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202212015.htm

     

    杨岳衡, 张宏福, 吴福元, 谢烈文, 张艳斌. 2005. Neptune多接收器等离子体质谱精确测定锶同位素组成. 质谱学报, 26(4): 215-221 doi: 10.3969/j.issn.1004-2997.2005.04.006

     

    杨岳衡, 张宏福, 刘颖, 谢烈文, 祁昌实, 涂湘林. 2007a. 地质样品的一次阴离子色谱法Hf分离及其MC-ICP-MS分析. 岩石学报, 23(2): 227-232 http://www.ysxb.ac.cn/article/id/aps_20070225

     

    杨岳衡, 张宏福, 谢烈文, 吴福元. 2007b. 多接收器电感耦合等离子质谱精确测定钕同位素组成. 分析化学, 35(1): 71-74 https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200701018.htm

     

    郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129-2152 doi: 10.3321/j.issn:0023-074X.2008.18.001

     

    朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学(地球科学), 49(9): 1346-1356 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909003.htm

  • 230904吴亚东-附表1-3
  • 加载中

(11)

(2)

计量
  • 文章访问数:  1185
  • PDF下载数:  202
  • 施引文献:  0
出版历程
收稿日期:  2023-04-11
修回日期:  2023-06-11
刊出日期:  2023-09-01

目录