花岗岩岩浆中H2O含量测定方法: 综述

严清高, 袁璐璐, 刘永超, 李建康. 2023. 花岗岩岩浆中H2O含量测定方法: 综述. 岩石学报, 39(7): 2197-2210. doi: 10.18654/1000-0569/2023.07.19
引用本文: 严清高, 袁璐璐, 刘永超, 李建康. 2023. 花岗岩岩浆中H2O含量测定方法: 综述. 岩石学报, 39(7): 2197-2210. doi: 10.18654/1000-0569/2023.07.19
YAN QingGao, YUAN LuLu, LIU YongChao, LI JianKang. 2023. Measurements of H2O content in granitic magma: A review.. Acta Petrologica Sinica, 39(7): 2197-2210. doi: 10.18654/1000-0569/2023.07.19
Citation: YAN QingGao, YUAN LuLu, LIU YongChao, LI JianKang. 2023. Measurements of H2O content in granitic magma: A review.. Acta Petrologica Sinica, 39(7): 2197-2210. doi: 10.18654/1000-0569/2023.07.19

花岗岩岩浆中H2O含量测定方法: 综述

  • 基金项目:

    本文受国家重点研发计划项目(2019YFC0605200)和国家自然科学基金项目(41872096、42002109、41703048)联合资助

详细信息
    作者简介:

    严清高, 男, 1995年生, 博士生, 矿物学、岩石学、矿床学专业, E-mail: qinggaoy@pku.edu.cn

    通讯作者: 袁璐璐, 女, 1989年生, 副研究员, 主要从事矿床地球化学研究, E-mail: yuanlulu436@126.com
  • 中图分类号: P588.11

Measurements of H2O content in granitic magma: A review.

More Information
  • 花岗岩岩浆中的H2O含量通过影响熔体物理化学性质, 进而控制了花岗岩岩浆的结晶粒度、岩浆侵位深度以及某些金属元素迁移、富集的过程。因此, 对花岗岩熔体包裹体开展H2O含量的定量研究具有重要的地质意义。目前, 测试花岗岩岩浆中H2O含量的方法可分为间接估算和直接测量两种方法。间接估算法, 如利用花岗岩熔体的粘度和岩浆中H2O溶解度模型进行岩浆H2O含量估算, 其H2O含量数据的准确性严重依赖于花岗岩熔体组成、熔体包裹体精确的温压参数; 直接测量法, 如利用傅里叶变换红外光谱(FTIR)、电子探针(EPMA)、二次离子探针(SIMS)等对熔体包裹体H2O含量直接开展原位微区分析, 这些测试技术具有样品制备繁琐、H2O容易泄漏、红外光谱分析光斑大, 测试结果受控因素较多等特点, 容易降低测试精度。激光拉曼测试法作为直接测量法中的重要技术, 具有样品制备简单, 原位、无损分析测试的特点, 本文认为激光拉曼在花岗岩岩浆H2O含量的定量研究中具有较好的应用和推广前景。今后, 可尝试建立热液金刚石压腔+激光拉曼原位检测熔体包裹体H2O含量的测试方法。

  • 加载中
  • 图 1 

    含水矿物分解产生H2O的花岗岩浆的固相线(据Hyndman, 1981修改)

    Figure 1. 

    Solidus for granitic magma for conditions under which all of the water is supplied by breakdown of a hydrous mineral with melting (modified after Hyndman, 1981)

    图 2 

    含角闪石、黑云母和白云母的源岩脱水熔融的温压条件及相应熔体固结时的理想侵位深度(据Varlamoff, 1978修改)

    Figure 2. 

    Roughly conditions for partial melting of amphibole-, biotite- and muscovite-bearing protoliths and its corresponding relationship between expected level of the granite emplacement (modified after Varlamoff, 1978)

    图 3 

    温度-H2O二元关系图(据Thomas and Davidson, 2012)

    Figure 3. 

    Schematic temperature and water concentration diagram for the system aluminosilicate-water (after Thomas and Davidson, 2012)

    图 4 

    由熔体包裹体化学组分、临界直径和均一温度计算岩浆粘度和扩散率的示意图(据Thomas, 1994)

    Figure 4. 

    Relationship between chemistry, melt inclusion diameter and the Stokes-Einstein equation between viscosity and diffusion (after Thomas, 1994)

    图 5 

    某一花岗岩中熔体粘度(a)和熔体包裹体的临界直径(b)与熔体包裹体均一温度的关系

    Figure 5. 

    Relationship between melt viscosity (a), critical melt inclusion diameters (b) and inclusion homogenization temperature in a granite

    图 6 

    偏铝质花岗岩中H2O饱和的固相线和液相线(据Holtz and Johannes, 1994; Holtz et al., 2001)

    Figure 6. 

    Water-saturated solidus curve and liquidus curves for given amounts of H2O in natural subaluminous granitic system with minimum compositions (solid lines) and eutectic compositions (dashed lines) (after Holtz and Johannes, 1994; Holtz et al., 2001)

    图 7 

    含流体相硅酸盐熔体包裹体的相变P-T轨迹(据Hurai et al., 2015)

    Figure 7. 

    P-T curve for phase transition of silicate melt inclusions (after Hurai et al., 2015)

    图 8 

    利用熔体包裹体均一实验数据和岩浆中H2O溶解度模型估算H2O含量的示意图(据Poutiainen and Scherbakova, 1998修改)

    Figure 8. 

    Diagram show the H2O contents estimated by melt inclusion homogenization temperature and magma H2O solubility (modified after Poutiainen and Scherbakova, 1998)

    图 9 

    利用花岗岩岩浆H2O溶解度模型估算甲基卡锂矿床似伟晶岩中H2O含量(据Deng et al., 2022)

    Figure 9. 

    Diagram for estimating the H2O contents of the granite-marginal pegmatite (GMP) melt in the Jiajika lithium deposit based on granitic melt H2O-saturated model (after Deng et al., 2022)

    图 10 

    三个伟晶岩石英中硅酸盐熔体包裹体的H2O拉曼光谱(据Thomas et al., 2000)

    Figure 10. 

    Raman spectra of the H2O within the silicate melt inclusion in the quartz from three pegmatites (after Thomas et al., 2000)

    图 11 

    合成玻璃H2O、D2O含量与其3100~3750cm-1、2250~2900cm-1之间拉曼光谱强度的线性关系

    Figure 11. 

    Correlation between H2O and D2O concentrations in synthetic glasses and the integral intensity between 3100~3750cm-1 and 2250~2900cm-1, respectively

    图 12 

    三个不同地方样品的熔体包裹体H2O含量与包裹体埋深的关系(数据据Thomas et al., 2006)

    Figure 12. 

    Calculated apparent water concentration vs. the inclusion depth for the melt inclusions from three different examples (data from Thomas et al., 2006)

    图 13 

    不同H2O含量玻璃标样在Horiba JY公司的Xplore型拉曼检测出的拉曼图谱

    Figure 13. 

    Raman spectra for varied H2O contents of glass standards at Xplore-type Raman in Horiba JY lab

    图 14 

    不同H2O含量玻璃标样的H2O拉曼图谱强度(积分面积)与泥质岩淬火玻璃H2O含量的线性关系

    Figure 14. 

    Correlations between intensity (a.u.) of the varied H2O contents of glass standards and H2O contents of glass which quenched during biotite schist partial melting

  •  

    Atlas ZD, Dixon JE, Sen G, Finny M and Martin-del Pozzo AL. 2006. Melt inclusions from Volcán Popocatépetl and Volcán de Colima, Mexico: Melt evolution due to vapor-saturated crystallization during ascent. Journal of Volcanology and Geothermal Research, 153(3-4): 221-240 doi: 10.1016/j.jvolgeores.2005.06.010

     

    Baker DR and Freda A. 2001. Eutectic crystallization in the undercooled orthoclase-quartz-H2O system: Experiments and simulations. European Journal of Mineralogy, 13(3): 453-466 doi: 10.1127/0935-1221/2001/0013-0453

     

    Ballouard C, Elburg MA, Tappe S, Reinke C, Ueckermann H and Doggart S. 2020. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geology Reviews, 116: 103252 doi: 10.1016/j.oregeorev.2019.103252

     

    Berndt J, Koepke J and Holtz F. 2005. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200MPa. Journal of Petrology, 46(1): 135-167

     

    Bodnar RJ and Frezzotti ML. 2020. Microscale chemistry: Raman analysis of fluid and melt inclusions. Elements, 16(2): 93-98 doi: 10.2138/gselements.16.2.93

     

    Brown M, Korhonen FJ and Siddoway CS. 2011. Organizing melt flow through the crust. Elements, 7(4): 261-266 doi: 10.2113/gselements.7.4.261

     

    Campbell IH and Taylor SR. 1983. No water, no granites: No oceans, no continents. Geophysical Research Letters, 10(11): 1061-1064 doi: 10.1029/GL010i011p01061

     

    Candela PA. 1997. A review of shallow, ore-related granites: Textures, volatiles, and ore metals. Journal of Petrology, 38(12): 1619-1633 doi: 10.1093/petroj/38.12.1619

     

    Chabiron A, Pfeifert C, Pironon J and Cuney M. 1999. Determination of water content in melt inclusions by Raman spectrometry. In: Ristedt H, Lüders V, Thomas R and Schmidt-Mumm A (eds. ). Terra Nostra-Schriften der Alfred-Wegner-Stiftung 99/6; ECROFI XV (European Current Research on Fluid Inclusions), Abstracts and Program, June 21-24, 1999. GeoForschungsZentrum Potsdam, 68-69

     

    Chabiron A, Pironon J and Massare D. 2004. Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy. Contributions to Mineralogy and Petrology, 146(4): 485-492 doi: 10.1007/s00410-003-0510-x

     

    Chiaradia M. 2020. How much water in basaltic melts parental to porphyry copper deposits? Frontiers in Earth Science, 8: 138 doi: 10.3389/feart.2020.00138

     

    Clemens J and Watkins J. 2001. The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contributions to Mineralogy and Petrology, 140(5): 600-606 doi: 10.1007/s004100000205

     

    Collins WJ, Murphy JB, Blereau E and Huang HQ. 2021. Water availability controls crustal melting temperatures. Lithos, 402-403: 106351 doi: 10.1016/j.lithos.2021.106351

     

    Congdon RD and Nash WP. 1991. Eruptive pegmatite magma: Rhyolite of the Honeycomb Hills, Utah. American Mineralogist, 76(7-8): 1261-1278

     

    Cooney TF, Wang L, Sharma SK, Gauldie RW and Montana AJ. 1994. Raman spectral study of solid and dissolved poly (vinyl alcohol) and ethylene-vinyl alcohol copolymer. Journal of Polymer Science Part B: Polymer Physics, 32(7): 1163-1174 doi: 10.1002/polb.1994.090320704

     

    Deng JY, Li JK, Zhang DH, Chou IM, Yan QG and Xiong X. 2022. Origin of pegmatitic melts from granitic magmas in the formation of the Jiajika lithium deposit in the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 229: 105147 doi: 10.1016/j.jseaes.2022.105147

     

    Devine JD, Gardner JE, Brack HP, Layne GD and Rutherford MJ. 1995. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. American Mineralogist, 80(3-4): 319-328 doi: 10.2138/am-1995-3-413

     

    Di Muro A, Villemant B, Montagnac G, Scaillet B and Reynard B. 2006. Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal micro-Raman spectrometry. Geochimica et Cosmochimica Acta, 70(11): 2868-2884 doi: 10.1016/j.gca.2006.02.016

     

    Dixon JE, Stolper EM and Holloway JR. 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part Ⅰ: Calibration and solubility models. Journal of Petrology, 36(6): 1607-1631

     

    Dolejs D and Baker DR. 2007. Liquidus Equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O-H2O to 100MPa: Ⅱ. Differentiation paths of fluorosilicic magmas in hydrous systems. Journal of Petrology, 48(4): 807-828 doi: 10.1093/petrology/egm002

     

    Ferrero S, Wunder B, Walczak K, O'Brien PJ and Ziemann MA. 2015. Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology, 43(5): 447-450 doi: 10.1130/G36534.1

     

    Gadas P, Novák M, Talla D and Galiová MV. 2013. Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda and Moravou, Czech Republic: A complex EMPA, LA-ICP-MS, IR and CL study. Mineralogy and Petrology, 107(2): 311-326 doi: 10.1007/s00710-012-0232-8

     

    Hauri E. 2002. SIMS analysis of volatiles in silicate glasses, 2: Isotopes and abundances in Hawaiian melt inclusions. Chemical Geology, 183(1-4): 115-141 doi: 10.1016/S0009-2541(01)00374-6

     

    Holtz F and Johannes W. 1994. Maximum and minimum water contents of granitic melts: Implications for chemical and physical properties of ascending magmas. Lithos, 32(1-2): 149-159 doi: 10.1016/0024-4937(94)90027-2

     

    Holtz F, Johannes W, Tamic N and Behrens H. 2001. Maximum and minimum water contents of granitic melts generated in the crust: A reevaluation and implications. Lithos, 56(1): 1-14 doi: 10.1016/S0024-4937(00)00056-6

     

    Hurai V, Huraiová M, Slobodník M and Thomas R. 2015. Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes. Amsterdam: Elsevier, 1-502

     

    Hyndman DW. 1981. Controls on source and depth of emplacement of granitic magma. Geology, 9(6): 244-249 doi: 10.1130/0091-7613(1981)9<244:COSADO>2.0.CO;2

     

    Ihinger PD, Hervig RL and McMillan PF. 1994. Analytical methods for volatiles in glasses. Reviews in Mineralogy and Geochemistry, 30(1): 67-121

     

    Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis: 1. A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864 doi: 10.2113/gsecongeo.64.8.843

     

    Kenneth SB, James EG and Robert WZ. 2012. Analyzing water contents in unexposed glass inclusions in quartz crystals. American Mineralogist, 97 (11-12): 1898-1904 doi: 10.2138/am.2012.4206

     

    King PL and White AJR. 2004. Granites, volatile solubility & tracking the formation of magmatic fluids. The Ishihara Symposium: Granites and Associated Metallogenesis. http://www.ga.gov.au/image_cache/GA3696.pdf

     

    Koch-Müller M and Rhede D. 2010. IR absorption coefficients for water in nominally anhydrous high-pressure minerals. American Mineralogist, 95(5-6): 770-775 doi: 10.2138/am.2010.3358

     

    Krauskopf KB and Bird DK. 1995. Introduction to Geochemistry. 3rd Edition. New York: McGraw-Hill, 1-647

     

    Leschik M, Heide G, Frischat GH, Behrens H, Wiedenbeck M, Wagner N, Heide K, Geiβler H and Reinholz U. 2004. Determination of H2O and D2O contents in rhyolitic glasses. Physics and Chemistry of Glasses, 45(4): 238-251

     

    Lester GW. 2002. The effects of excess H2O and H2O in combination with F, Cl, S, or P on liquid immiscibility in the system Si- Fe-Al-K-O at 2kbar: Implications for the genesis of iron-oxide magmas. M. A. Thesis. Binghamton: State University of New York

     

    Lester GW. 2012. An experimental study of liquid-phase separation in the systems Fe2SiO4-Fe3O4-KAlSi2O6-SiO2-H2O, Fe3O4-KAlSi2O6-SiO2-H2O and Fe3O4-Fe2O3-KAlSi2O6-SiO2-H2O with or without P, S, F, Cl or Ca0.5Na0.5Al1.5Si2.5O8: Implications for immiscibility in volatile-rich natural magmas. Ph. D. Dissertation. Kingston, Ontario: Queen's University

     

    Li JK, Chou IM, Yuan SD and Burruss RC. 2013. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell. Geofluids, 13(4): 467-474 doi: 10.1111/gfl.12048

     

    Li JK. 2015. In situ observation of separation mechanism of ore-forming fluid from granitic magma in granite-related deposit. Journal of Jilin University (Earth Science Edition), 44(2): 518-526 (in Chinese with English abstract)

     

    Li JK and Chou IM. 2016. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China. Journal of Geochemical Exploration, 171: 29-36 doi: 10.1016/j.gexplo.2015.10.012

     

    Li SH, Li JK, Chou IM, Jiang L and Ding X. 2017. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions. Journal of Asian Earth Sciences, 137: 180-193 doi: 10.1016/j.jseaes.2016.11.016

     

    London D. 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites. The Canadian Mineralogist, 30(3): 499-540

     

    London D. 2008. Pegmatites. The Canadian Mineralogist, Special Publication, 10: 347

     

    London D. 2009. The origin of primary textures in granitic pegmatites. The Canadian Mineralogist, 47(4): 697-724 doi: 10.3749/canmin.47.4.697

     

    Lowenstern JB. 1995. Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada Short Course, 23: 71-99

     

    Lu HZ. 2011. Fluids immiscibility and fluid inclusions. Acta Petrologica Sinica, 27(5): 1253-1261 (in Chinese with English abstract)

     

    Matson DW, Sharma SK and Philpotts JA. 1986. Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. American Mineralogist, 71(5-6): 694-704

     

    McMillan PF, Poe BT, Gillet PH and Reynard B. 1994. A study of SiO2 glass and supercooled liquid to 1950K via high-temperature Raman spectroscopy. Geochimica et Cosmochimica Acta, 58(17): 3653-3664 doi: 10.1016/0016-7037(94)90156-2

     

    Moore G, Vennemann T and Carmichael ISE. 1998. An empirical model for the solubility of H2O in magmas to 3 kilobars. American Mineralogist, 83(1-2): 36-42 doi: 10.2138/am-1998-1-203

     

    Müller A, Thomas R, Wiedenbeck M, Seltmann R and Breiter K. 2006. Water content of granitic melts from Cornwall and Erzgebirge: A Raman spectroscopy study of melt inclusions. European Journal of Mineralogy, 18(4): 429-440 doi: 10.1127/0935-1221/2006/0018-0429

     

    Mysen BO, Holtz F, Pichavant M, Beny JM and Montel JM. 1997. Solution mechanisms of phosphorus in quenched hydrous and anhydrous granitic glass as a function of peraluminosity. Geochimica et Cosmochimica Acta, 61(18): 3913-3926 doi: 10.1016/S0016-7037(97)00193-2

     

    Nabelek PI, Whittington AG and Sirbescu MLC. 2010. The role of H2O in rapid emplacement and crystallization of granite pegmatites: Resolving the paradox of large crystals in highly undercooled melts. Contributions to Mineralogy and Petrology, 160(3): 313-325 doi: 10.1007/s00410-009-0479-1

     

    Naney MT. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283(10): 993-1033 doi: 10.2475/ajs.283.10.993

     

    Ni HW, Keppler H and Behrens H. 2011. Electrical conductivity of hydrous basaltic melts: Implications for partial melting in the upper mantle. Contributions to Mineralogy and Petrology, 162(3): 637-650 doi: 10.1007/s00410-011-0617-4

     

    Nichols ARL and Wysoczanski RJ. 2007. Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chemical Geology, 242(3-4): 371-384 doi: 10.1016/j.chemgeo.2007.04.007

     

    Pandya N, Muenow DW and Sharma SK. 1992. The effect of bulk composition on the speciation of water in submarine volcanic glasses. Geochimica et Cosmochimica Acta, 56(5): 1875-1883 doi: 10.1016/0016-7037(92)90317-C

     

    Poutiainen M and Scherbakova TF. 1998. Fluid and melt inclusion evidence for the origin of idiomorphic quartz crystals in topaz-bearing granite from the Salmi batholith, Karelia, Russia. Lithos, 44(3-4): 141-151 doi: 10.1016/S0024-4937(98)00052-8

     

    Rossman GR. 2006. Analytical methods for measuring water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, 62(1): 1-28 doi: 10.2138/rmg.2006.62.1

     

    Schneiderhöhn H. 1961. Die Erzlagerstätten der Erde: Band Ⅱ. Die Pegmatite. Stuttgart: Gustav Fischer

     

    Shaw HR. 1972. Viscosities of magmatic silicate liquids: An empirical method of prediction. American Journal of Science, 272(9): 870-893 doi: 10.2475/ajs.272.9.870

     

    Silver LA, Ihinger PD and Stolper E. 1990. The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 104(2): 142-162 doi: 10.1007/BF00306439

     

    Sirbescu MLC, Wilke M and Veksler IV. 2009. Understanding pegmatite texture: Kinetics of crystallization in the haplogranite-Li-B-H2O system. In: EOS Trans AGU 90 Fall Meet., (Suppl): V43B-2233

     

    Sirbescu MLC, Schmidt C, Veksler IV, Whittington AG and Wilke M. 2017. Experimental crystallization of undercooled felsic liquids: Generation of pegmatitic texture. Journal of Petrology, 58(3): 539-568 doi: 10.1093/petrology/egx027

     

    Stolper E. 1982. Water in silicate glasses: An infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81(1): 1-17 doi: 10.1007/BF00371154

     

    Tacchetto T, Bartoli O, Cesare B, Berkesi M, Aradi LE, Dumond G and Szabó C. 2019. Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): Evidence of carbon recycling during Neoarchean crustal melting. Chemical Geology, 508: 197-209 doi: 10.1016/j.chemgeo.2018.05.043

     

    Thomas R. 1994. Estimation of the viscosity and the water content of silicate melts from melt inclusion data. European Journal of Mineralogy, 6(4): 511-535 doi: 10.1127/ejm/6/4/0511

     

    Thomas R. 2000. Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. American Mineralogist, 85(5-6): 868-872 doi: 10.2138/am-2000-5-631

     

    Thomas R, Webster JD and Heinrich W. 2000. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology, 139(4): 394-401 doi: 10.1007/s004100000120

     

    Thomas R. 2002. Determination of water contents in melt inclusions by laser Raman spectroscopy. In: Workshop-Short Course on Volcanic Systems, Geochemical and Geophysical Monitoring-Melt Inclusions: Methods, Applications and Problems. Napoli, Italy, 211-216

     

    Thomas R, Förster HJ and Heinrich W. 2003. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: A melt and fluid-inclusion study. Contributions to Mineralogy and Petrology, 144(4): 457-472 doi: 10.1007/s00410-002-0410-5

     

    Thomas R, Förster HJ, Rickers K and Webster JD. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148(5): 582-601 doi: 10.1007/s00410-004-0624-9

     

    Thomas R, Kamenetsky VS and Davidson P. 2006. Laser Raman spectroscopic measurements of water in unexposed glass inclusions. American Mineralogist, 91(2-3): 467-470 doi: 10.2138/am.2006.2107

     

    Thomas R and Davidson P. 2012. Water in granite and pegmatite-forming melts. Ore Geology Reviews, 46: 32-46 doi: 10.1016/j.oregeorev.2012.02.006

     

    Turner M, Ireland T, Hermann J, Holden P, Padrón-Navarta JA, Hauri EH and Turner S. 2015. Sensitive high resolution ion microprobe-stable isotope (SHRIMP-SI) analysis of water in silicate glasses and nominally anhydrous reference minerals. Journal of Analytical Atomic Spectrometry, 30(8): 1706-1722 doi: 10.1039/C5JA00047E

     

    Varlamoff N. 1978. Classification and spatial-temporal distribution of tin and associated mineral deposits. In: Stemprok M, Burnol L and Tischendorf G (eds. ). Metallization Associated with Acid Magmatism. Ustredni Ustav, Geologicky, Praha, 139-158

     

    Veksler IV. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210(1-4): 7-31 doi: 10.1016/j.chemgeo.2004.06.002

     

    Wang R, Richards JP, Hou ZQ, Yang ZM and DuFrane SA. 2014. Increased magmatic water content: The key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet. Economic Geology, 109(5): 1315-1339 doi: 10.2113/econgeo.109.5.1315

     

    Ward R, Stevens G and Kisters A. 2008. Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos, 105(3-4): 253-271 doi: 10.1016/j.lithos.2008.04.001

     

    Waters LE, Andrews BJ and Lange RA. 2015. Rapid crystallization of plagioclase phenocrysts in silicic melts during fluid-saturated ascent: Phase equilibrium and decompression experiments. Journal of Petrology, 56(5): 981-1006 doi: 10.1093/petrology/egv025

     

    Watson EB. 1976. Two-liquid partition coefficients: Experimental data and geochemical implications. Contributions to Mineralogy and Petrology, 56(1): 119-134 doi: 10.1007/BF00375424

     

    Webster JD. 1997. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochimica et Cosmochimica Acta, 61(5): 1017-1029 doi: 10.1016/S0016-7037(96)00395-X

     

    Webster JD and De Vivo B. 2002. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. American Mineralogist, 87(8): 1046-1061

     

    White RW and Powell R. 2010. Retrograde melt-residue interaction and the formation of near-anhydrous leucosomes in migmatites. Journal of Metamorphic Geology, 28(6): 579-597 doi: 10.1111/j.1525-1314.2010.00881.x

     

    Wood BJ and Blundy JD. 2002. The effect of H2O on crystal-melt partitioning of trace elements. Geochimica et Cosmochimica Acta, 66(20): 3647-3656 doi: 10.1016/S0016-7037(02)00935-3

     

    Wysoczanski R and Tani K. 2006. Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc. Journal of Volcanology and Geothermal Research, 156(3-4): 302-314 doi: 10.1016/j.jvolgeores.2006.03.024

     

    Yan QG, Li JK, Li C, Chen ZY and Xiong X. 2022. The geochemical characteristics and their geological significance of apatite from the Zhawulong-Caolong granitic pegmatite-hosted rare metal deposit in Sichuan and Qinghai provinces, west China. Acta Petrologica Sinica, 38(2): 341-355 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.02.03

     

    Zhang DH. 2015. Geochemistry of Ore-Forming Processes. Beijing: Geological Publishing House, 1-481 (in Chinese)

     

    Zhang WF, Xia XP, Eiichi T, Li L, Yang Q, Zhang YQ, Yang YN, Liu ML and Lai C. 2020. Optimization of SIMS analytical parameters for water content measurement of olivine. Surface and Interface Analysis, 52(5): 224-233 doi: 10.1002/sia.6729

     

    Zheng YF, Xia QX, Chen RX and Gao XY. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3-4): 342-374 doi: 10.1016/j.earscirev.2011.04.004

     

    李建康. 2015. 花岗岩类矿床成矿流体形成过程的原位观测实验. 吉林大学学报(地球科学版), 44(2): 518-526 doi: 10.13278/j.cnki.jjuese.201402110

     

    卢焕章. 2011. 流体不混溶性和流体包裹体. 岩石学报, 27(5): 1253-1261 http://www.ysxb.ac.cn/article/id/aps_20110501

     

    严清高, 李建康, 李超, 陈振宇, 熊欣. 2022. 川西扎乌龙-青海草陇花岗伟晶岩型稀有金属矿床磷灰石地球化学特征及地质意义. 岩石学报, 38(2): 341-355 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.02.03

     

    张德会. 2015. 成矿作用地球化学. 北京: 地质出版社, 1-481

  • 加载中

(14)

计量
  • 文章访问数:  1385
  • PDF下载数:  371
  • 施引文献:  0
出版历程
收稿日期:  2022-11-30
修回日期:  2023-02-26
刊出日期:  2023-07-01

目录