青藏高原东缘龙门山断裂带孕震区域流体行为

李春锐, 李海兵, 司家亮, 王焕, 吴琼, 张进江. 2022. 青藏高原东缘龙门山断裂带孕震区域流体行为. 岩石学报, 38(11): 3559-3577. doi: 10.18654/1000-0569/2022.11.18
引用本文: 李春锐, 李海兵, 司家亮, 王焕, 吴琼, 张进江. 2022. 青藏高原东缘龙门山断裂带孕震区域流体行为. 岩石学报, 38(11): 3559-3577. doi: 10.18654/1000-0569/2022.11.18
LI ChunRui, LI HaiBing, SI JiaLiang, WANG Huan, WU Qiong, ZHANG JinJiang. 2022. Fluid behaviors from the seismogenic region of Longmenshan fault zone, eastern Tibetan Plateau. Acta Petrologica Sinica, 38(11): 3559-3577. doi: 10.18654/1000-0569/2022.11.18
Citation: LI ChunRui, LI HaiBing, SI JiaLiang, WANG Huan, WU Qiong, ZHANG JinJiang. 2022. Fluid behaviors from the seismogenic region of Longmenshan fault zone, eastern Tibetan Plateau. Acta Petrologica Sinica, 38(11): 3559-3577. doi: 10.18654/1000-0569/2022.11.18

青藏高原东缘龙门山断裂带孕震区域流体行为

  • 基金项目:

    本文受国家自然科学基金项目(41830217、41972229)、中国地质调查局项目(DD20190059)和南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0201)联合资助

详细信息
    作者简介:

    李春锐, 男, 1991年生, 博士生, 构造地质学专业, E-mail: chunruilee@126.com

    通讯作者: 李海兵, 男, 1966年生, 博士, 研究员, 博士生导师, 主要从事构造地质学及活动构造研究, E-mail: lihaibing06@163.com
  • 中图分类号: P542.3;P597.2

Fluid behaviors from the seismogenic region of Longmenshan fault zone, eastern Tibetan Plateau

More Information
  • 震间期、同震期和震后期流体对断裂带物质的强度和运动性质起到重要作用。前人已识别出断裂带浅部区域流体对断层的弱化以及矿物沉淀导致的断层愈合, 然而对于断裂带深部流体的研究鲜有报道。为深入了解孕震区流体行为以及地震成核过程中流体对断层的影响, 本文以龙门山断裂带的映秀-北川断裂南段虹口乡八角庙村附近碎裂岩滑动带中石英和方解石脉为研究对象, 通过对断裂带脉体的显微构造、碳氧同位素和主量元素含量等分析, 开展地震相关脉体的特征结构、流体来源和矿物沉淀环境的研究。结果表明, 碎裂岩主滑移带由颜色结构不同的三层断层泥和细小的方解石条带组成, 在主滑动带边部和上盘碎裂岩中则分别发育了指示震间期、同震期和震后期三个阶段断层活动的脉体: (1)沿阶步生长的纤维状方解石脉和拉伸型柱状颗粒方解石脉; (2)断层泥楔入脉; (3)近等粒状方解石脉以及具有横向竞争生长结构的非等粒状方解石脉和石英脉。它们分别代表了震间期封闭的还原环境下的微滑动、同震外源高压流体注入以及震后开放的氧化环境至还原环境下的矿物沉淀。碳氧同位素结果表明主滑动带和碎裂岩方解石脉δ18OV-PDB值为-20.5‰~-20.3‰, 低于围岩碳酸钙胶结物, 表明方解石脉具有大气水来源特征。方解石沉淀温度结合地温梯度表明方解石脉的形成深度大于4km, 与碎裂岩形成深度及龙门山断裂带震源深度一致。该地区方解石脉和石英脉的研究深化了关于龙门山断裂带孕震区流体行为的理解, 并且对进一步认识震间期、同震期和震后期断层的强度变化机制具有重要意义。

  • 加载中
  • 图 1 

    龙门山及邻区地质构造图(据Wang et al., 2019修改)

    Figure 1. 

    Geological structures of Longmenshan and adjacent areas (modified after Wang et al., 2019)

    图 2 

    映秀-北川断裂八角庙露头

    Figure 2. 

    Yingxiu-Beichuan fault (YBF) outcrop in Bajiaomiao Village

    图 3 

    八角庙露头碎裂岩滑动带运动学特征和采样位置

    Figure 3. 

    Motion characteristics and sampling positions of the fault at the Bajiaomiao cataclastic slip zone outcrop

    图 4 

    八角庙碎裂岩主滑动带方解石脉和石英脉显微结构

    Figure 4. 

    Microstructures of calcite and quartz veins in principal slip zone at the Bajiaomiao cataclastic outcrop

    图 5 

    主滑动带显微结构

    Figure 5. 

    Microstructures of the principal slip zone

    图 6 

    八角庙碎裂岩中方解石脉和石英脉显微结构

    Figure 6. 

    Microstructures of calcite and quartz vein of the Bajiaomiao cataclastic rock

    图 7 

    沿主滑动带近等粒状方解石脉和沿阶步生长的纤维脉显微结构

    Figure 7. 

    Microstructures of calcite blocky veins and slickenfibres along the principal slip zone

    图 8 

    沿主滑动带近等粒状方解石脉和沿阶步生长的纤维脉结构与形貌

    Figure 8. 

    Structures and morphology of calcite blocky veins and slickenfibres along the principal slip zone

    图 9 

    多期破裂-愈合方解石脉显微结构

    Figure 9. 

    Microstructures of multi-stage crack-healing calcite veins

    图 10 

    具有横向竞争生长的非等粒状结构方解石脉显微结构

    Figure 10. 

    Microstructures of elongated blocky veins in the cataclastic rocks

    图 11 

    碎裂正交偏光岩显微结构

    Figure 11. 

    Microstructures of cataclastic host rock

    图 12 

    砂岩围岩方解石胶结物和断裂带方解石脉的同位素特征

    Figure 12. 

    Isotopic characteristics of calcite veins in fault and calcite cement in host sandstones

    图 13 

    EMPA测定的方解石脉Mg、Fe和Mn元素含量

    Figure 13. 

    Contents of Mg, Fe and Mn in calcite veins determined by EMPA

    图 14 

    沿阶步生长的纤维脉(a)和拉伸型柱状颗粒脉(b)模式图

    Figure 14. 

    Sketches of slickenfibres veins (a) and stretching veins (b)

    图 15 

    地震周期中的流体循环和矿物脉结构

    Figure 15. 

    Fluid circulation and structure of mineral veins in the earthquake cycle

    表 1 

    龙门山断裂带八角庙剖面方解石脉和围岩的碳氧同位素值

    Table 1. 

    Summary of the oxygen and carbon isotopic compositions of veins and host rock in the Longmenshan Bajiaomiao section

    样品号 采样位置 类型 δ18OV-PDB δ18OV-SMOW δ13CV-PDB
    (‰)
    HKC-1 -20.3 10 0
    HKC-2 碎裂岩 方解石脉 -20.5 9.8 0.3
    HKC-3 -20.5 9.8 0.4
    HKC-4 主滑动带 方解石脉 -20.4 9.9 -1.1
    B105 -16.5 13.9 -1
    B113 -11.3 19.3 0.2
    B242 区域围岩 砂岩方解石
    胶结物
    -12.2 18.3 2.4
    B456 -12.1 18.4 2.4
    B990 -12.2 18.3 2.3
    下载: 导出CSV

    表 2 

    龙门山断裂带八角庙剖面方解石脉EPMA元素含量(wt%)

    Table 2. 

    EPMA element contents (wt%) of calcite vein in Longmenshan Bajiaomiao section

    测试位置 点号 Mg Fe Mn 测试位置 点号 Mg Fe Mn
    cal-1 1 0.145 0.011 0.047 cal-4 1 0.309 0.029 0.067
    cal-1 2 0.147 0.011 0.042 cal-4 2 0.303 0.030 0.062
    cal-1 3 0.124 0.011 0.036 cal-4 3 0.306 0.030 0.071
    cal-1 4 0.114 0.010 0.036 cal-4 4 0.311 0.030 0.064
    cal-1 5 0.126 0.010 0.046 cal-4 5 0.319 0.030 0.062
    cal-2 1 0.314 0.029 0.057 cal-5 1 0.291 0.026 0.044
    cal-2 2 0.299 0.026 0.053 cal-5 2 0.296 0.026 0.041
    cal-2 3 0.345 0.024 0.053 cal-5 3 0.316 0.025 0.040
    cal-2 4 0.271 0.023 0.049 cal-5 4 0.297 0.026 0.041
    cal-2 5 0.236 0.022 0.050 cal-5 5 0.273 0.023 0.041
    cal-3 1 0.170 0.012 0.037 cal-6 1 0.303 0.026 0.054
    cal-3 2 0.150 0.012 0.040 cal-6 2 0.340 0.028 0.054
    cal-3 3 0.217 0.016 0.053 cal-6 3 0.314 0.030 0.063
    cal-3 4 0.208 0.016 0.053 cal-6 4 0.356 0.029 0.061
    cal-3 5 0.195 0.013 0.046 cal-6 5 0.345 0.030 0.053
    下载: 导出CSV
  •  

    Andrews DJ. 2002. A fault constitutive relation accounting for thermal pressurization of pore fluid. Journal of Geophysical Research: Solid Earth, 107(B12): 2363

     

    Audet P, Bostock MG, Christensen NI and Peacock SM. 2009. Seismic evidence for over-pressured subducted oceanic crust and megathrust fault sealing. Nature, 457(7225): 76-78 doi: 10.1038/nature07650

     

    Barnaby RJ and Rimstidt JD. 1989. Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. GSA Bulletin, 101(6): 795-804 doi: 10.1130/0016-7606(1989)101<0795:RCOCCI>2.3.CO;2

     

    Bons PD. 2001. The formation of large quartz veins by rapid ascent of fluids in mobile hydro-fractures. Tectonophysics, 336(1-4): 1-17 doi: 10.1016/S0040-1951(01)00090-7

     

    Bons PD, Elburg MA and Gomez-Rivas E. 2012. A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43: 33-62 doi: 10.1016/j.jsg.2012.07.005

     

    Bos B and Spiers CJ. 2002. Fluid-assisted healing processes in gouge-bearing faults: Insights from experiments on a rock analogue system. Pure and Applied Geophysics, 159(11): 2537-2566

     

    Boullier AM, Fujimoto K, Ohtani T, Roman-Ross G, Lewin é, Ito H, Pezard P and Ildefonse B. 2004. Textural evidence for recent co-seismic circulation of fluids in the Nojima fault zone, Awaji Island, Japan. Tectonophysics, 378(3-4): 165-181 doi: 10.1016/j.tecto.2003.09.006

     

    Brodsky EE, Rowe CD, Meneghini F and Moore JC. 2009. A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research: Solid Earth, 114(B1): B01303

     

    Budd DA, Hammes U and Ward WB. 2000. Cathodoluminescence in calcite cements: New insights on Pb and Zn sensitizing, Mn activation, and Fe quenching at low trace-element concentrations. Journal of Sedimentary Research, 70(1): 217-226 doi: 10.1306/2DC4090C-0E47-11D7-8643000102C1865D

     

    Caputo R and Hancock PL. 1998. Crack-jump mechanism of micro-vein formation and its implications for stress cyclicity during extension fracturing. Journal of Geodynamics, 27(1): 45-60 doi: 10.1016/S0264-3707(97)00029-X

     

    Chen JY, Yang XS, Ma SL and Spiers CJ. 2013. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip. Journal of Geophysical Research: Solid Earth, 118(2): 474-496 doi: 10.1002/jgrb.50089

     

    Chen JY, Verberne BA and Spiers CJ. 2015. Effects of healing on the seismogenic potential of carbonate fault rocks: Experiments on samples from the Longmenshan Fault, Sichuan, China. Journal of Geophysical Research: Solid Earth, 120(8): 5479-5506 doi: 10.1002/2015JB012051

     

    Chiodini G, Cardellini C, Di Luccio F, Selva J, Frondini F, Caliro S, Rosiello A, Beddini G and Ventura G. 2020. Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Science Advances, 6(35): eabc2938 doi: 10.1126/sciadv.abc2938

     

    Clemenzi L, Storti F, Balsamo F, Molli G, Ellam R, Muchez P and Swennen R. 2015. Fluid pressure cycles, variations in permeability, and weakening mechanisms along low-angle normal faults: The Tellaro detachment, Italy. GSA Bulletin, 127(11-12): 1689-1710 doi: 10.1130/B31203.1

     

    Collettini C, Viti C, Tesei T and Mollo S. 2013. Thermal decomposition along natural carbonate faults during earthquakes. Geology, 41(8): 927-930 doi: 10.1130/G34421.1

     

    Cox SF. 1987. Antitaxial crack-seal vein microstructures and their relationship to displacement paths. Journal of Structural Geology, 9(7): 779-787 doi: 10.1016/0191-8141(87)90079-4

     

    Cox SF, Knackstedt MA and Braun J. 2001. Principals of Structural Control on Permeability and Fluid Flow in Hydrothermal Systems. Society of Economic Geologists, 1-24

     

    De Paola N, Hirose T, Mitchell T, Di Toro G, Viti C and Shimamoto T. 2011. Fault lubrication and earthquake propagation in thermally unstable rocks. Geology, 39(1): 35-38 doi: 10.1130/G31398.1

     

    Demurtas M, Fondriest M, Balsamo F, Clemenzi L, Storti F, Bistacchi A and Di Toro G. 2016. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). Journal of Structural Geology, 90: 185-206 doi: 10.1016/j.jsg.2016.08.004

     

    Doglioni C, Barba S, Carminati E and Riguzzi F. 2015. Fault on-off versus strain rate and earthquakes energy. Geoscience Frontiers, 6(2): 265-276 doi: 10.1016/j.gsf.2013.12.007

     

    Duan QB, Yang XS, Ma SL, Chen JY and Chen JY. 2016. Fluid-rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666: 260-280 doi: 10.1016/j.tecto.2015.11.008

     

    Durney D and Ramsay JG. 1973. Incremental strains measured by syntectonic crystal growths. In: Gravity and Tectonics. New York: Wiley, 67-96

     

    Eyal Y, Kaufman A and Bar-Matthews M. 1992. Use of 230Th/U ages of striated carnotites for dating fault displacements. Geology, 20(9): 829-832 doi: 10.1130/0091-7613(1992)020<0829:UOTUAO>2.3.CO;2

     

    Fagereng Å, Remitti F and Sibson RH. 2011. Incrementally developed slickenfibers: Geological record of repeating low stress-drop seismic events? Tectonophysics, 510(3-4): 381-386 doi: 10.1016/j.tecto.2011.08.015

     

    Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ and Withjack MO. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557-1575 doi: 10.1016/j.jsg.2010.06.009

     

    Faulkner DR, Sanchez-Roa C, Boulton C and Den Hartog SAM. 2018. Pore fluid pressure development in compacting fault gouge in theory, experiments, and nature. Journal of Geophysical Research: Solid Earth, 123(1): 226-241 doi: 10.1002/2017JB015130

     

    Faure G. 1998. Principles and Applications of Geochemistry. 2nd Edition. Upper Saddle River, NJ: Prentice Hall

     

    Ferraro F, Agosta F, Ukar E, Grieco DS, Cavalcante F, Belviso C and Prosser G. 2019. Structural diagenesis of carbonate fault rocks exhumed from shallow crustal depths: An example from the central-southern Apennines, Italy. Journal of Structural Geology, 122: 58-80 doi: 10.1016/j.jsg.2019.02.008

     

    Fisher DM and Brantley SL. 1992. Models of quartz overgrowth and vein formation: Deformation and episodic fluid flow in an ancient subduction zone. Journal of Geophysical Research: Solid Earth, 97(B13): 20043-20061 doi: 10.1029/92JB01582

     

    Fu BH, Shi PL, Guo HD, Okuyama S, Ninomiya Y and Wright S. 2011. Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40(4): 805-824 doi: 10.1016/j.jseaes.2010.11.011

     

    Gomberg J and the Cascadia 2007 and Beyond Working Group. 2010. Slow-slip phenomena in Cascadia from 2007 and beyond: A review. GSA Bulletin, 122(7-8): 963-978 doi: 10.1130/B30287.1

     

    Gratier JP. 1993. Experimental pressure solution of halite by an indenter technique. Geophysical Research Letters, 20(15): 1647-1650 doi: 10.1029/93GL01398

     

    Gudmundsson A. 2001. Fluid overpressure and flow in fault zones: Field measurements and models. Tectonophysics, 336(1-4): 183-197 doi: 10.1016/S0040-1951(01)00101-9

     

    Hausegger S, Kurz W, Rabitsch R, Kiechl E and Brosch FJ. 2010. Analysis of the internal structure of a carbonate damage zone: Implications for the mechanisms of fault breccia formation and fluid flow. Journal of Structural Geology, 32(9): 1349-1362 doi: 10.1016/j.jsg.2009.04.014

     

    He XL, Li HB, Wang H, Zhang L, Xu ZQ and Si JL. 2018. Creeping along the Guanxian-Anxian fault of the 2008 Mw 7.9 Wenchuan earthquake in the Longmen Shan, China. Tectonics, 37(7): 2124-2141 doi: 10.1029/2017TC004820

     

    Hickman S, Sibson R and Bruhn R. 1995. Introduction to special section: Mechanical involvement of fluids in faulting. Journal of Geophysical Research: Solid Earth, 100(B7): 12831-12840 doi: 10.1029/95JB01121

     

    Hickman SH and Evans B. 1991. Experimental pressure solution in halite: The effect of grain/interphase boundary structure. Journal of the Geological Society, 148(3): 549-560 doi: 10.1144/gsjgs.148.3.0549

     

    Hilgers C, Koehn D, Bons PD and Urai JL. 2001. Development of crystal morphology during unitaxial growth in a progressively widening vein: Ⅱ. Numerical simulations of the evolution of antitaxial fibrous veins. Journal of Structural Geology, 23(6-7): 873-885 doi: 10.1016/S0191-8141(00)00160-7

     

    Hilgers C, Dilg-Gruschinski K and Urai JL. 2004. Microstructural evolution of syntaxial veins formed by advective flow. Geology, 32(3): 261-264 doi: 10.1130/G20024.1

     

    Huang YL, Liang CT, Wu J, Wang CL, Liu ZQ and Jiang NB. 2020. The seismicity in the southern Longmenshan fault zone based on a dense seismic array. Chinese Journal of Geophysics, 63(3): 1183-1196 (in Chinese with English abstract)

     

    Ito Y and Obara K. 2006. Very low frequency earthquakes within accretionary prisms are very low stress-drop earthquakes. Geophysical Research Letters, 33(9): L09302

     

    Jiang L, Hu SY, Zhao WZ, Xu ZH, Shi SY, Fu QL, Zeng HL, Liu W and Fall A. 2018. Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation, Sichuan Basin, China. AAPG Bulletin, 102(12): 2599-2628 doi: 10.1306/05111817021

     

    Kuo LW, Huang JR, Fang JN, Si JL, Li HB and Song SR. 2018. Carbonaceous materials in the fault zone of the Longmenshan fault belt: 1. Signatures within the deep Wenchuan earthquake fault zone and their implications. Minerals, 8(9): 385 doi: 10.3390/min8090385

     

    Li HB, Fu XF, Van Der Woerd J, Si JL, Wang ZX, Hou LW, Qiu ZL, Li N, Wu FY, Xu ZQ and Tapponnier P. 2008. Co-seisimic surface rupture and dextral-slip oblique thrusting of the Ms 8.0 Wenchuan earthquake. Acta Geologica Sinica, 82(12): 1623-1643 (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.12.002

     

    Li HB, Wang H, Xu ZQ, Si JL, Pei JL, Li TF, Huang Y, Song SR, Kuo LW, Sun ZM, Chevalier ML and Liu DL. 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584: 23-42 doi: 10.1016/j.tecto.2012.08.021

     

    Li HB, Xu ZQ, Niu YX, Kong GS, Huang Y, Wang H, Si JL, Sun ZM, Pei JL, Gong Z, Chevalier ML and Liu DL. 2014. Structural and physical property characterization in the Wenchuan-earthquake Fault Scientific Drilling Project-Hole 1 (WFSD-1). Tectonophysics, 619-620: 86-100 doi: 10.1016/j.tecto.2013.08.022

     

    Li K, Liu SB, Lü ZX and Liu Y. 2019. The origin of formation water and the carbonate cement precipitation mechanism of the Xujiahe Formation tight sandstone in the western Sichuan foreland basin. Arabian Journal of Geosciences, 12(4): 111 doi: 10.1007/s12517-019-4254-y

     

    Li Y, Allen PA, Zhou RJ, Densmore AL and Ellis MA. 2006. Mesozoic-Cenozoic dynamics of Longmenshan foreland basin along the eastern margin of the Tibetan Plateau and its coupled relationship with continent collision. Acta Geologica Sinica, 80(8): 1101-1109 (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2006.08.002

     

    Lin AM, Tanaka N, Uda S and Satish-Kumar M. 2003. Repeated coseismic infiltration of meteoric and seawater into deep fault zones: A case study of the Nojima fault zone, Japan. Chemical Geology, 202(1-2): 139-153 doi: 10.1016/j.chemgeo.2003.08.010

     

    Lin AM. 2011. Seismic slip recorded by fluidized ultra-cataclastic veins formed in a co-seismic shear zone during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 39(6): 547-550 doi: 10.1130/G32065.1

     

    Liu SB, Huang SJ, Shen ZM, Lü ZX and Song RC. 2014. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the fourth member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China. Science China (Earth Sciences), 57(5): 1077-1092 doi: 10.1007/s11430-014-4851-2

     

    Liu YF, Hu WX, Cao J, Wang XL, Tang QS, Wu HG and Kang X. 2018. Diagenetic constraints on the heterogeneity of tight sandstone reservoirs: A case study on the Upper Triassic Xujiahe Formation in the Sichuan Basin, Southwest China. Marine and Petroleum Geology, 92: 650-669 doi: 10.1016/j.marpetgeo.2017.11.027

     

    Liu YF, Hu WX, Cao J, Wang XL, Zhu F, Tang QS and Gao WL. 2019. Fluid-rock interaction and its effects on the Upper Triassic tight sandstones in the Sichuan Basin, China: Insights from petrographic and geochemical study of carbonate cements. Sedimentary Geology, 383: 121-135 doi: 10.1016/j.sedgeo.2019.01.012

     

    Machel HG. 1985. Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geoscience Canada, 12(4): 139-147

     

    Matsubara M, Obara K and Kasahara K. 2009. High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan. Tectonophysics, 472(1-4): 6-17 doi: 10.1016/j.tecto.2008.06.013

     

    Micklethwaite S and Cox SF. 2006. Progressive fault triggering and fluid flow in aftershock domains: Examples from mineralized Archaean fault systems. Earth and Planetary Science Letters, 250(1-2): 318-330 doi: 10.1016/j.epsl.2006.07.050

     

    Mitchell TM and Faulkner DR. 2012. Towards quantifying the matrix permeability of fault damage zones in low porosity rocks. Earth and Planetary Science Letters, 339-340: 24-31 doi: 10.1016/j.epsl.2012.05.014

     

    Nollet S, Hilgers C and Urai J. 2005. Sealing of fluid pathways in overpressure cells: A case study from the Buntsandstein in the Lower Saxony Basin (NW Germany). International Journal of Earth Sciences, 94(5): 1039-1055

     

    Nuriel P, Rosenbaum G, Zhao JX, Feng YX, Golding SD, Villemant B and Weinberger R. 2012. U-Th dating of striated fault planes. Geology, 40(7): 647-650 doi: 10.1130/G32970.1

     

    Ohtani T, Fujimoto K, Ito H, Tanaka H, Tomida N and Higuchi T. 2000. Fault rocks and past to recent fluid characteristics from the borehole survey of the Nojima fault ruptured in the 1995 Kobe earthquake, southwest Japan. Journal of Geophysical Research: Solid Earth, 105(B7): 16161-16171 doi: 10.1029/2000JB900086

     

    Okamoto A and Sekine K. 2011. Textures of syntaxial quartz veins synthesized by hydrothermal experiments. Journal of Structural Geology, 33(12): 1764-1775 doi: 10.1016/j.jsg.2011.10.004

     

    Oliver J. 1986. Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14(2): 99-102 doi: 10.1130/0091-7613(1986)14<99:FETFOB>2.0.CO;2

     

    Oliver NHS and Bons PD. 2001. Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids, 1(2): 137-162 doi: 10.1046/j.1468-8123.2001.00013.x

     

    O'Neil JR, Clayton RN and Mayeda TK. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547-5558 doi: 10.1063/1.1671982

     

    Passchier CW and Trouw RAJ. 2005. Microtectonics. 2nd Edition. Berlin, Heidelberg: Springer

     

    Phillips WJ. 1972. Hydraulic fracturing and mineralization. Journal of the Geological Society, 128(4): 337-359 doi: 10.1144/gsjgs.128.4.0337

     

    Putnis A and Mauthe G. 2001. The effect of pore size on cementation in porous rocks. Geofluids, 1(1): 37-41 doi: 10.1046/j.1468-8123.2001.11001.x

     

    Ramsay JG. 1980. The crack-seal mechanism of rock deformation. Nature, 284(5752): 135-139 doi: 10.1038/284135a0

     

    Renard F, Gratier JP and Jamtveit B. 2000. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology, 22(10): 1395-1407 doi: 10.1016/S0191-8141(00)00064-X

     

    Rice JR. 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5): B05311

     

    Robert F, Boullier AM and Firdaous K. 1995. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical Research: Solid Earth, 100(B7): 12861-12879 doi: 10.1029/95JB00190

     

    Rutter EH. 1976. A discussion on natural strain and geological structure: The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 283(1312): 203-219 doi: 10.1098/rsta.1976.0079

     

    Savard MM, Veizer J and Hinton R. 1995. Cathodoluminescene at low Fe and Mn concentrations: A SIMS study of zones in natural calcites. Journal of Sedimentary Research, 65(1a): 208-213 doi: 10.1306/D4268072-2B26-11D7-8648000102C1865D

     

    Si JL, Li HB, Kuo LW, Huang JR, Song SR, Pei JL, Wang H, Song L, Fang JN and Sheu HS. 2018. Carbonaceous materials in the Longmenshan fault belt zone: 3. Records of seismic slip from the trench and implications for faulting mechanisms. Minerals, 8(10): 457

     

    Sibson RH. 1975. Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal International, 43(3): 775-794 doi: 10.1111/j.1365-246X.1975.tb06195.x

     

    Sibson RH, Moore JMM and Rankin AH. 1975. Seismic pumping: A hydrothermal fluid transport mechanism. Journal of the Geological Society, 131(6): 653-659 doi: 10.1144/gsjgs.131.6.0653

     

    Sibson RH, Robert F and Poulsen KH. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6): 551-555 doi: 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2

     

    Sibson RH. 2000. Fluid involvement in normal faulting. Journal of Geodynamics, 29(3-5): 469-499 doi: 10.1016/S0264-3707(99)00042-3

     

    Sibson RH. 2014. Earthquake rupturing in fluid-overpressured crust: How common? Pure and Applied Geophysics, 171(11): 2867-2885 doi: 10.1007/s00024-014-0838-3

     

    Smeraglia L, Berra F, Billi A, Boschi C, Carminati E and Doglioni C. 2016. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks. Earth and Planetary Science Letters, 450: 292-305 doi: 10.1016/j.epsl.2016.06.042

     

    Smeraglia L, Billi A, Carminati E, Cavallo A and Doglioni C. 2017. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy. Tectonophysics, 712-713: 156-169 doi: 10.1016/j.tecto.2017.05.014

     

    Stein S and Wysession M. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Oxford: Blackwell Science

     

    Takahashi N, Kodaira S, Nakanishi A, Park JO, Miura S, Tsuru T, Kaneda Y, Suyehiro K, Kinoshita H, Hirata N and Iwasaki T. 2002. Seismic structure of western end of the Nankai trough seismogenic zone. Journal of Geophysical Research: Solid Earth, 107(B10): 2212

     

    Tarasewicz JPT, Woodcock NH and Dickson JAD. 2005. Carbonate dilation breccias: Examples from the damage zone to the Dent Fault, Northwest England. GSA Bulletin, 117(5-6): 736-745

     

    Taylor JHP, Frechen J and Degens ET. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407-430 doi: 10.1016/0016-7037(67)90051-8

     

    Toriumi M and Hara E. 1995. Crack geometries and deformation by the crack-seal mechanism in the Sambagawa metamorphic belt. Tectonophysics, 245(3-4): 249-261 doi: 10.1016/0040-1951(94)00238-5

     

    Uysal IT, Feng YX, Zhao JX, Altunel E, Weatherley D, Karabacak V, Cengiz O, Golding SD, Lawrence MG and Collerson KD. 2007. U-series dating and geochemical tracing of Late Quaternary travertine in co-seismic fissures. Earth and Planetary Science Letters, 257(3-4): 450-462 doi: 10.1016/j.epsl.2007.03.004

     

    Verhaert G, Muchez P, Sintubin M, Similox-Tohon D, Vandycke S and Waelkens M. 2003. Reconstruction of neo-tectonic activity using carbonate precipitates: A case study from the northwestern extremity of the Isparta Angle (SW Turkey). Journal of Geochemical Exploration, 78-79: 197-201 doi: 10.1016/S0375-6742(03)00070-0

     

    Virgo S, Abe S and Urai JL. 2014. The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing. Journal of Geophysical Research: Solid Earth, 119(12): 8708-8727 doi: 10.1002/2014JB011520

     

    Wang EQ and Meng QR. 2009. Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt. Science in (China Series D), 52(5): 579-592 doi: 10.1007/s11430-009-0053-8

     

    Wang H, Li HB, Si JL and Huang Y. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica Sinica, 29(6): 2048-2060 (in Chinese with English abstract)

     

    Wang H, Li HB, Si JL, Sun ZM and Huang Y. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620: 101-114 doi: 10.1016/j.tecto.2013.08.029

     

    Wang H, Li HB, Zhang L, Zheng Y, Si JL and Sun ZM. 2019. Paleoseismic slip records and uplift of the Longmen Shan, eastern Tibetan Plateau. Tectonics, 38(1): 354-373 doi: 10.1029/2018TC005278

     

    Watanabe Y, Nakai SI and Lin AM. 2008. Attempt to determine U-Th ages of calcite veins in the Nojima fault zone, Japan. Geochemical Journal, 42(6): 507-513 doi: 10.2343/geochemj.42.507

     

    Wells DL and Coppersmith KJ. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002

     

    Wibberley CAJ and Shimamoto T. 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436(7051): 689-692 doi: 10.1038/nature03901

     

    Williams RT, Goodwin LB, Sharp WD and Mozley PS. 2017. Reading a 400000-year record of earthquake frequency for an intraplate fault. Proceedings of the National Academy of Sciences of the United States of America, 114(19): 4893-4898 doi: 10.1073/pnas.1617945114

     

    Woodcock NH, Dickson JAD and Tarasewicz JPT. 2007. Transient permeability and reseal hardening in fault zones: Evidence from dilation breccia textures. Geological Society, London, Special Publications, 270(1): 43-53 doi: 10.1144/GSL.SP.2007.270.01.03

     

    Xu Q, Hoke GD, Liu-Zeng J, Ding L, Wang W and Yang Y. 2014. Stable isotopes of surface water across the Longmenshan margin of the eastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 15(8): 3416-3429 doi: 10.1002/2014GC005252

     

    Xu ZQ, Ji SC, Li HB, Hou LW, Fu XF and Cai ZH. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 31(3): 291-301 doi: 10.18814/epiiugs/2008/v31i3/002

     

    Yan DP, Zhou MF, Li SB and Wei GQ. 2011. Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmen Shan thrust belt, eastern Tibetan Plateau. Tectonics, 30(6): TC6005

     

    Zhang B, Yin CY, Gu ZD, Zhang JJ, Yan SY and Wang Y. 2015. New indicators from bedding-parallel beef veins for the fault valve mechanism. Science China (Earth Sciences), 58(8): 1320-1336 doi: 10.1007/s11430-015-5086-6

     

    Zhang BJ, Zhao T, Li YY, Xing YF, Wang GL, Gao J, Tang XC, Yuan WZ and Zhang DL. 2019. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in North China as an example. China Geology, 2(4): 512-521 doi: 10.31035/cg2018132

     

    Zheng Y, Li HB, Sun ZM, Wang H, Zhang JJ, Li CL and Cao Y. 2016. New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt, eastern Tibet. Tectonics, 35(12): 2781-2806 doi: 10.1002/2016TC004210

     

    Zhou RJ, Li Y, Densmore AL, Ellis MA, He YL, Wang FL and Li XG. 2006. Active tectonics of the eastern margin of the Tibet Plateau. Journal of Mineralogy and Petrology, 26(2): 40-51 (in Chinese with English abstract) doi: 10.3969/j.issn.1001-6872.2006.02.007

     

    黄焱羚, 梁春涛, 吴晶, 王朝亮, 刘志强, 江宁波. 2020. 基于密集台阵研究龙门山断裂带南段地震空段的地震活动性. 地球物理学报, 63(3): 1183-1196 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003035.htm

     

    李海兵, 付小方, Van Der Woerd J, 司家亮, 王宗秀, 侯立玮, 邱祝礼, 李宁, 吴富峣, 许志琴, Tapponnier. 2008. 汶川地震(Ms 8.0)地表破裂及其同震右旋斜向逆冲作用. 地质学报, 82(12): 1623-1643 doi: 10.3321/j.issn:0001-5717.2008.12.002

     

    李勇, Allen PA, 周荣军, Densmore AL, Ellis MA. 2006. 青藏高原东缘中新生代龙门山前陆盆地动力学及其与大陆碰撞作用的耦合关系. 地质学报, 80(8): 1101-1109 doi: 10.3321/j.issn:0001-5717.2006.08.002

     

    王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论. 中国科学(D辑), 38(10): 1221-1233 doi: 10.3321/j.issn:1006-9267.2008.10.005

     

    王焕, 李海兵, 司家亮, 黄尧. 2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报, 29(6): 2048-2060 http://www.ysxb.ac.cn/article/id/aps_20130614

     

    周荣军, 李勇, Densmore AL, Ellis MA, 何玉林, 王凤林, 黎小刚. 2006. 青藏高原东缘活动构造. 矿物岩石, 26(2): 40-51 doi: 10.3969/j.issn.1001-6872.2006.02.007

  • 加载中

(15)

(2)

计量
  • 文章访问数:  1151
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2022-05-20
修回日期:  2022-08-17
刊出日期:  2022-11-01

目录