华北板块北缘东段泥盆纪伸展作用:来自辽北昌图碰撞后岩浆岩的证据

张超, 权京玉, 张丽, 葛锦涛, 张立东. 2022. 华北板块北缘东段泥盆纪伸展作用:来自辽北昌图碰撞后岩浆岩的证据. 岩石学报, 38(8): 2345-2363. doi: 10.18654/1000-0569/2022.08.08
引用本文: 张超, 权京玉, 张丽, 葛锦涛, 张立东. 2022. 华北板块北缘东段泥盆纪伸展作用:来自辽北昌图碰撞后岩浆岩的证据. 岩石学报, 38(8): 2345-2363. doi: 10.18654/1000-0569/2022.08.08
ZHANG Chao, QUAN JingYu, ZHANG Li, GE JinTao, ZHANG LiDong. 2022. Devonian extension of the eastern section of the northern margin of the North China Plate: Evidence from post-collision magmatic rocks in Changtu area, northern Liaoning Province. Acta Petrologica Sinica, 38(8): 2345-2363. doi: 10.18654/1000-0569/2022.08.08
Citation: ZHANG Chao, QUAN JingYu, ZHANG Li, GE JinTao, ZHANG LiDong. 2022. Devonian extension of the eastern section of the northern margin of the North China Plate: Evidence from post-collision magmatic rocks in Changtu area, northern Liaoning Province. Acta Petrologica Sinica, 38(8): 2345-2363. doi: 10.18654/1000-0569/2022.08.08

华北板块北缘东段泥盆纪伸展作用:来自辽北昌图碰撞后岩浆岩的证据

  • 基金项目:

    本文受国家自然科学基金项目(42102271、42130305、41902234)和中国地质调查局项目(DD20190042-03、DD20221632-02、DD20160048)联合资助

详细信息
    作者简介:

    张超,男,1986年生,高级工程师,构造地质学专业,E-mail: congray@163.com

  • 中图分类号: P588.121;P588.141; P597.3

Devonian extension of the eastern section of the northern margin of the North China Plate: Evidence from post-collision magmatic rocks in Changtu area, northern Liaoning Province

  • 华北板块北缘是研究古亚洲洋演化及其与华北克拉通北缘相互作用过程的关键地带,但其晚古生代特别是泥盆纪时期的构造演化一直存在争议,辽北地区出露的泥盆纪岩浆岩为解决这一科学问题提供了新的证据。本文以昌图地区新发现的祥子岭和夏家沟花岗质岩体以及红花店变流纹岩为研究对象,开展了岩相学、地球化学、年代学以及Lu-Hf同位素等研究,并对其岩石成因及构造环境进行了探讨。LA-ICP-MS锆石U-Pb测年结果显示,祥子岭黑云母二长花岗岩侵位年龄为389±2Ma,夏家沟二长花岗岩侵位年龄为377±7Ma,红花店变流纹岩年龄为385±2Ma,是泥盆纪岩浆活动的产物。这些岩石具有高硅(SiO2=71.23%~77.39%)、富碱(K2O+Na2O=8.23%~10.25%),贫铁(FeOT=1.17%~2.68%)、镁(MgO=0.01%~0.24%)、钙(CaO=0.40%~1.27%),以及准铝质-弱过铝质(A/CNK=0.84~1.03)的地球化学特征,并且富集Rb、Th、Pb和亏损Ba、P、Ti。结合较低的Zr+Nb+Ce+Y含量(109.4×10-6~329.4×10-6)、10000×Ga/Al比值(0.57~3.59)和锆饱和温度(716~778℃),昌图泥盆纪岩浆岩表现出高分异I型花岗岩的特征。此外,样品的锆石εHf(t)值皆为正值(6.4~14.6)且随着结晶年龄的年轻而显著升高,表明研究区泥盆纪岩浆岩是幔源基性岩浆与新生地壳再融熔体发生岩浆混合作用的产物,在岩浆演化过程中经历了结晶分离作用。结合区域资料分析,辽北昌图泥盆纪岩浆岩形成于伸展环境,与晚志留世末白乃庙弧与华北克拉通北缘发生弧-陆碰撞后的地壳伸展作用有关。

  • 加载中
  • 图 1 

    中亚造山带构造简图(a, 据Jahn et al., 2000)和华北板块北缘构造纲要图(b, 据Zhang et al., 2014; Wang et al., 2016; Shi et al., 2022)

    Figure 1. 

    Simplified tectonic map of the Central Asian Orogenic Belt (a, modified after Jahn et al., 2000) and sketch tectonic map of the northern margin of the North China Plate (b, modified after Zhang et al., 2014; Wang et al., 2016; Shi et al., 2022)

    图 2 

    昌图地区地质简图及样品采集位置

    Figure 2. 

    Simplified geological map of Changtu area with the sample locations

    图 3 

    昌图泥盆纪岩浆岩野外和显微照片

    Figure 3. 

    Field and microscopic photos for the Devonian magmatic rocks in the Changtu area

    图 4 

    昌图泥盆纪岩浆岩锆石的代表性阴极发光图像(a、d、g)、协和年龄(b、e、h)和稀土元素特征(c、f、i,标准化值据McDonough and Sun, 1995)

    Figure 4. 

    Cathodoluminescence images of representative zircon grains (a, d, g), concordia diagrams zircon measuring point (b, e, h) and chondrite-normalized REE patterns (c, f, i, normalization values after McDonough and Sun, 1995) from the Devonian magmatic rocks in the Changtu area

    图 5 

    昌图泥盆纪岩浆岩TAS图解(a, 据Irvine and Baragar, 1971)、K2O-SiO2图解(b, 据Peccerillo and Taylor, 1976)和A/CNK-A/NK图解(c, 据Maniar and Piccoli, 1989)

    Figure 5. 

    TAS (a, after Irvine and Baragar, 1971), K2O vs. SiO2 (b, after Peccerillo and Taylor, 1976) and A/CNK vs. A/NK (c, after Maniar and Piccoli, 1989) diagram of the Devonian magmatic rocks in the Changtu area

    图 6 

    昌图泥盆纪岩浆岩球粒陨石标准化稀土元素配分模式(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据McDonough and Sun, 1995)

    Figure 6. 

    Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagram (b, normalization values after McDonough and Sun, 1995) for the Devonian magmatic rocks in the Changtu area

    图 7 

    昌图泥盆纪岩浆岩的Hf同位素特征(底图据张琪琪, 2021)

    Figure 7. 

    Zircon Hf isotopic compositions of the Devonian magmatic rocks in the Changtu area (base map after Zhang, 2021)

    图 8 

    昌图泥盆纪岩浆岩的成因类型判别图(据Whalen et al., 1987)

    Figure 8. 

    Genetic type discrimination diagrams for the Devonian magmatic rocks in the Changtu area (after Whalen et al., 1987)

    图 9 

    昌图泥盆纪岩浆岩SiO2-P2O5图解(a)、Rb-Y图解(b)和Rb-Th图解(c)(据Chappell, 1999)

    Figure 9. 

    SiO2 vs. P2O5 diagram (a), Rb vs. Y diagram (b) and Rb vs. Th diagram (c) of the Devonian magmatic rocks in the Changtu area (after Chappell, 1999)

    图 10 

    昌图泥盆纪岩浆岩结晶分异作用过程判别图解(底图据Geng et al., 2011; Blundy and Shimizu, 1991; Ewart and Griffin, 1994; Zhang et al., 2015)

    Figure 10. 

    Discrimination diagrams showing the fractional crystallization process of the Devonian magmatic rocks in the Changtu area (base map after Geng et al., 2011; Blundy and Shimizu, 1991; Ewart and Griffin, 1994; Zhang et al., 2015)

    图 11 

    昌图泥盆纪花岗岩构造环境判别图(据Pearce et al., 1984)

    Figure 11. 

    Discrimination diagram of tectonic setting for the Devonian granites in the Changtu area (after Pearce et al., 1984)

    表 1 

    昌图泥盆纪岩浆岩LA-ICP-MS锆石U-Pb分析结果

    Table 1. 

    LA-ICP-MS zircon U-Pb data of the Devonian magmatic rocks in the Changtu area

    测点号 含量(×10-6) Th/U 同位素比值 年龄(Ma)
    Th U 1σ 1σ 1σ 1σ 1σ 1σ
    样品235-20黑云母二长花岗岩,206Pb/238U加权平均年龄为389±2Ma(MSWD=0.32,n=23)
    -01 1099 991 1.11 0.0538 0.0009 0.4641 0.0081 0.0623 0.0006 361 37 387 6 389 4
    -02 729 1038 0.70 0.0547 0.0010 0.4723 0.0091 0.0623 0.0007 467 39 393 6 390 4
    -03 897 1211 0.74 0.0563 0.0009 0.481 7 0.0090 0.0617 0.0007 465 37 399 6 386 4
    -04 794 1131 0.70 0.0542 0.0008 0.4723 0.0083 0.0628 0.0007 389 33 393 6 393 4
    -05 1066 1274 0.84 0.0556 0.0009 0.4834 0.0084 0.0627 0.0006 439 3 400 6 392 4
    -06 1142 1239 0.92 0.0546 0.0010 0.4724 0.0089 0.0625 0.0007 394 34 393 6 391 4
    -07 930 473 1.97 0.0573 0.0014 0.4947 0.0119 0.0624 0.0007 506 58 408 8 390 4
    -08 658 927 0.71 0.0525 0.0010 0.4525 0.0089 0.0622 0.0007 306 43 379 6 389 4
    -09 1373 1554 0.88 0.0524 0.0008 0.4499 0.0079 0.0619 0.0006 302 3 377 6 387 4
    -10 1355 1221 1.11 0.0537 0.0009 0.4661 0.0080 0.0627 0.0006 367 37 388 6 392 3
    -11 684 1073 0.64 0.0541 0.0010 0.4694 0.0093 0.0627 0.0008 376 43 391 6 392 5
    -12 821 1031 0.80 0.0536 0.0010 0.4647 0.0090 0.0627 0.0007 354 43 388 6 392 4
    -13 910 1242 0.73 0.0534 0.0010 0.4586 0.0088 0.0621 0.0008 346 41 383 6 389 5
    -14 601 871 0.69 0.0534 0.0011 0.4592 0.0091 0.0623 0.0007 346 46 384 6 390 4
    -15 1149 1486 0.77 0.0530 0.0011 0.4501 0.0094 0.0614 0.0007 328 46 377 7 384 4
    -16 1281 1690 0.76 0.0550 0.0008 0.4704 0.0070 0.0619 0.0005 413 27 391 5 387 3
    -17 1131 1449 0.78 0.0562 0.0009 0.4801 0.0081 0.0618 0.0006 461 31 398 6 387 4
    -19 722 921 0.78 0.0562 0.0010 0.4834 0.0098 0.0623 0.0007 457 41 400 7 389 4
    -20 898 1291 0.70 0.0559 0.0011 0.4776 0.0093 0.0620 0.0007 456 10 396 6 388 4
    -21 934 1372 0.68 0.0550 0.0009 0.4728 0.0082 0.0623 0.0006 409 42 393 6 390 4
    -22 1216 1492 0.82 0.0557 0.0008 0.4816 0.0078 0.0625 0.0007 443 31 399 5 391 4
    -23 435 848 0.51 0.0558 0.0011 0.4757 0.0090 0.0617 0.0006 456 10 395 6 386 4
    -25 1147 1299 0.88 0.0560 0.0012 0.4800 0.0108 0.0620 0.0007 450 16 398 7 388 4
    样品235-9二长花岗岩,206Pb/238U加权平均年龄为377±2Ma(MSWD=0.44,n=18)
    -01 532 794 0.67 0.0536 0.0011 0.4400 0.0091 0.0595 0.0007 354 44 370 6 372 4
    -02 1611 2202 0.73 0.0540 0.0007 0.4512 0.0069 0.0604 0.0007 372 62 378 5 378 4
    -03 621 1180 0.53 0.0539 0.0009 0.4499 0.0077 0.0605 0.0006 365 69 377 5 378 4
    -05 1066 995 1.07 0.0558 0.0011 0.4633 0.0101 0.0601 0.0008 443 44 387 7 376 5
    -06 315 576 0.55 0.0538 0.0013 0.4511 0.0111 0.0607 0.0006 361 54 378 8 380 4
    -08 1844 2354 0.78 0.0540 0.0010 0.4518 0.0110 0.0603 0.0009 372 43 379 8 377 5
    -09 369 615 0.60 0.0542 0.0012 0.4448 0.0095 0.0594 0.0006 389 50 374 7 372 4
    -10 781 969 0.81 0.0534 0.0009 0.4415 0.0082 0.0597 0.0006 346 39 371 6 374 4
    -11 933 1130 0.83 0.0537 0.0008 0.4455 0.0076 0.0599 0.0006 367 35 374 5 375 3
    -12 780 907 0.86 0.0532 0.0009 0.4409 0.0083 0.0598 0.0006 345 37 371 6 374 4
    -13 509 758 0.67 0.0539 0.0011 0.4520 0.0091 0.0607 0.0007 365 44 379 6 380 4
    -14 445 635 0.70 0.0524 0.0014 0.4317 0.0113 0.0596 0.0008 302 61 364 8 373 5
    -15 589 828 0.71 0.0517 0.0010 0.4331 0.0080 0.0606 0.0006 333 47 365 6 379 4
    -16 1072 1552 0.69 0.0520 0.0009 0.4355 0.0081 0.0604 0.0006 287 36 367 6 378 4
    -17 784 1389 0.56 0.0541 0.0011 0.4535 0.0094 0.0604 0.0006 376 44 380 7 378 3
    -18 1901 2361 0.81 0.0528 0.0010 0.4421 0.0085 0.0606 0.0007 320 44 372 6 379 4
    -19 870 1012 0.86 0.0521 0.0012 0.4353 0.0103 0.0603 0.0006 300 52 367 7 377 4
    -20 422 742 0.57 0.0536 0.0015 0.4506 0.0124 0.0607 0.0007 367 58 378 9 380 4
    样品GZ05-1变流纹岩,206Pb/238U加权平均年龄为385±2Ma(MSWD=0.32,n=36)
    -1 688 990 0.69 0.0546 0.0010 0.4663 0.0083 0.0618 0.0006 394 41 389 6 387 4
    -2 209 330 0.63 0.0556 0.0012 0.4750 0.0110 0.0617 0.0007 435 48 395 8 386 4
    -5 177 312 0.57 0.0549 0.0014 0.4629 0.0126 0.0610 0.0008 406 59 386 9 382 5
    -7 210 300 0.70 0.0565 0.0016 0.4814 0.0138 0.0616 0.0008 472 95 399 9 385 5
    -8 117 173 0.68 0.0519 0.0018 0.4415 0.0156 0.0614 0.0008 280 84 371 11 384 5
    -9 536 493 1.09 0.0574 0.0020 0.4913 0.0170 0.0618 0.0010 506 81 406 12 387 6
    -10 187 346 0.54 0.0539 0.0015 0.4610 0.0134 0.0614 0.0008 365 64 385 9 384 5
    -11 321 447 0.72 0.0553 0.0012 0.4646 0.0104 0.0606 0.0007 433 48 387 7 379 4
    -12 619 1124 0.55 0.0546 0.0009 0.4639 0.0079 0.0612 0.0007 398 35 387 5 383 4
    -13 789 1206 0.65 0.0541 0.0011 0.4651 0.0096 0.0619 0.0007 376 44 388 7 387 4
    -14 346 515 0.67 0.0541 0.0011 0.4588 0.0094 0.0610 0.0006 376 44 383 7 382 4
    -15 375 296 1.27 0.0568 0.0020 0.4843 0.0163 0.0617 0.0009 483 78 401 11 386 6
    -16 294 350 0.84 0.0549 0.0015 0.4748 0.0142 0.0621 0.0007 409 68 394 10 389 4
    -17 121 199 0.61 0.0563 0.0023 0.4815 0.0193 0.0619 0.0012 465 89 399 13 387 7
    -19 254 412 0.62 0.0572 0.0012 0.4879 0.0110 0.0615 0.0008 502 46 403 8 385 5
    -20 210 249 0.85 0.0558 0.0013 0.4793 0.0119 0.0619 0.0008 456 54 398 8 387 5
    -21 439 563 0.78 0.0577 0.0012 0.4931 0.0105 0.0616 0.0006 520 46 407 7 385 4
    -22 318 370 0.86 0.0534 0.0014 0.4572 0.0114 0.0619 0.0007 343 90 382 8 387 4
    -23 162 222 0.73 0.0557 0.0016 0.4739 0.0139 0.0615 0.0007 439 67 394 10 384 4
    -24 474 791 0.60 0.0554 0.0012 0.4714 0.0102 0.0614 0.0007 428 44 392 7 384 4
    -25 288 375 0.77 0.0551 0.0014 0.4736 0.0120 0.0621 0.0008 417 56 394 8 388 5
    -26 166 190 0.87 0.0586 0.0019 0.4987 0.0151 0.0621 0.0009 554 77 411 10 388 6
    -27 243 350 0.69 0.0561 0.0014 0.4722 0.0116 0.0610 0.0008 457 28 393 8 382 5
    -28 583 809 0.72 0.0546 0.0011 0.4622 0.0100 0.0613 0.0008 394 46 386 7 383 5
    -29 756 1123 0.67 0.0550 0.0010 0.4708 0.0091 0.0619 0.0007 409 39 392 6 387 4
    -30 176 235 0.75 0.0598 0.0017 0.4972 0.0133 0.0606 0.0008 594 27 410 9 379 5
    -31 200 254 0.79 0.0582 0.0019 0.4852 0.0156 0.0605 0.0008 539 70 402 11 379 5
    -32 959 1084 0.88 0.0556 0.0013 0.4746 0.0117 0.0618 0.0008 439 50 394 8 387 5
    -33 167 257 0.65 0.0556 0.0016 0.4719 0.0137 0.0618 0.0008 439 65 392 9 387 5
    -34 382 389 0.98 0.0553 0.0014 0.4721 0.0133 0.0617 0.0008 433 57 393 9 386 5
    -35 233 287 0.81 0.0566 0.0015 0.4799 0.0123 0.0619 0.0008 476 92 398 8 387 5
    -36 637 946 0.67 0.0563 0.0013 0.4764 0.0132 0.0610 0.0009 465 55 396 9 382 5
    -37 308 347 0.89 0.0537 0.0013 0.4546 0.0116 0.0614 0.0007 367 56 380 8 384 4
    -38 160 234 0.68 0.0544 0.0015 0.4623 0.0140 0.0615 0.0007 387 65 386 10 385 4
    -39 195 225 0.87 0.0546 0.0018 0.4615 0.0158 0.0613 0.0009 394 81 385 11 384 6
    -40 268 358 0.75 0.0536 0.0015 0.4570 0.0134 0.0616 0.0008 367 58 382 9 386 5
    下载: 导出CSV

    表 2 

    昌图区泥盆纪岩浆岩的主量元素(wt%)、稀土和微量元素(×10-6)分析结果

    Table 2. 

    Major element (wt%) and trace element (×10-6) compositions of the Devonian magmatic rocks in the Changtu area

    样品号 235-20 CT12 CT13 CT14 235-5 235-9 235-11 235-19 GZ05-1 GZ05-2 GZ05-4 GZ05-14
    岩性 黑云母二长花岗岩 二长花岗岩 变流纹岩
    岩体 祥子岭岩体 夏家沟岩体 泥盆纪变质火山-沉积岩
    SiO2 74.71 76.83 75.48 77.39 75.66 76.21 74.51 72.84 74.75 74.51 75.71 71.23
    TiO2 0.22 0.14 0.23 0.12 0.18 0.13 0.15 0.21 0.13 0.16 0.12 0.21
    Al2O3 12.57 12.21 12.97 12.05 11.54 12.48 12.69 12.99 13.64 13.86 12.98 13.78
    Fe2O3 1.37 0.95 1.08 0.68 1.61 1.18 1.37 1.56 0.88 1.06 0.86 2.12
    FeO 0.46 0.54 0.60 0.56 0.54 0.58 0.42 0.50 0.62 0.66 0.67 0.77
    MnO 0.04 0.02 0.04 0.03 0.08 0.06 0.06 0.08 0.07 0.05 0.05 0.1
    MgO 0.10 0.04 0.10 0.06 0.01 0.01 0.07 0.24 0.04 0.07 0.08 0.02
    CaO 0.74 0.57 0.85 0.58 0.55 0.74 0.93 1.27 0.40 0.71 0.42 1.18
    Na2O 2.95 3.32 3.73 3.55 3.68 3.38 3.56 3.01 4.72 4.74 3.98 5.02
    K2O 6.26 4.96 4.51 4.84 6.13 4.85 5.88 7.04 4.52 3.72 4.77 5.23
    P2O5 0.02 0.02 0.03 0.01 0.02 0.01 0.02 0.03 0.01 0.03 0.01 0.01
    LOI 0.54 0.37 0.33 0.23 0.18 0.34 0.33 0.23 0.17 0.36 0.28 0.27
    Total 99.99 99.96 99.93 100.11 100.17 99.99 99.99 100.01 99.94 99.93 99.94 99.95
    Na2O+K2O 9.21 8.28 8.24 8.39 9.81 8.23 9.44 10.05 9.24 8.46 8.75 10.25
    A/CNK 0.97 1.03 1.03 0.99 0.84 1.03 0.91 0.87 1.02 1.06 1.04 0.86
    DI 94 95 93 95 93 94 95 94 96 94 95 94
    σ 2.68 2.03 2.09 2.05 2.95 2.04 2.83 3.39 2.69 2.27 2.34 3.72
    La 25.50 18.41 13.98 28.47 23.59 22.31 30.64 41.58 26.60 33.40 21.09 33.57
    Ce 48.04 46.72 26.91 47.72 51.46 44.35 39.88 64.32 99.57 98.37 92.91 93.99
    Pr 4.74 2.32 1.77 3.22 6.93 5.16 6.19 7.46 6.48 7.54 5.32 7.69
    Nd 15.39 12.68 10.34 16.88 26.49 17.79 21.09 24.21 22.98 26.17 17.87 27.00
    Sm 2.59 2.53 2.00 3.25 7.60 4.12 4.52 4.50 4.68 4.55 3.53 4.89
    Eu 0.46 0.52 0.68 0.37 0.44 0.21 0.25 0.50 0.84 1.00 0.78 0.80
    Gd 2.37 2.38 1.77 2.98 6.47 3.71 3.81 4.04 4.54 4.11 3.61 4.35
    Tb 0.22 0.46 0.35 0.56 1.98 1.06 0.92 0.84 0.85 0.68 0.68 0.79
    Dy 1.27 2.70 2.08 3.48 8.99 5.44 4.93 4.92 5.37 3.97 4.43 4.70
    Ho 0.24 0.57 0.44 0.76 1.92 1.19 1.05 1.06 1.13 0.83 0.95 1.04
    Er 0.68 1.77 1.35 2.41 5.58 3.73 3.24 3.26 3.53 2.60 3.01 3.23
    Tm 0.11 0.34 0.25 0.48 1.02 0.72 0.61 0.65 0.67 0.48 0.56 0.52
    Yb 0.75 2.38 1.7 3.25 7.08 4.96 4.41 4.65 4.48 3.29 3.75 4.09
    Lu 0.13 0.37 0.26 0.50 1.11 0.76 0.71 0.71 0.67 0.48 0.55 0.63
    ∑REE 102.5 94.15 63.88 114.3 150.6 115.5 122.3 162.7 182.4 187.4 159.0 187.3
    LREE 96.72 83.18 55.68 99.92 116.5 93.94 102.6 142.6 161.2 171.0 141.5 167.9
    HREE 5.76 10.97 8.20 14.41 34.13 21.57 19.69 20.14 21.24 16.42 17.54 19.33
    LREE/HREE 16.78 7.59 6.79 6.93 3.41 4.36 5.21 7.08 7.59 10.42 8.07 8.69
    (La/Sm)N 6.19 4.57 4.39 5.51 1.95 3.41 4.26 5.81 3.58 4.62 3.76 4.32
    (Gd/Lu)N 2.30 0.79 0.84 0.73 0.73 0.61 0.66 0.71 0.84 1.07 0.82 0.86
    (La/Yb)N 22.86 5.21 5.55 5.91 2.25 3.03 4.68 6.02 4.00 6.85 3.80 5.53
    δEu 0.56 0.64 1.08 0.36 0.19 0.16 0.18 0.35 0.55 0.69 0.66 0.52
    Rb 103.9 190.4 83.73 184.9 171.3 194.1 136.0 196.9 118.9 94.69 98.50 66.29
    Sr 78.70 69.26 84.69 107.6 15.11 25.42 18.97 85.10 92.72 166.4 80.12 77.24
    Y 6.04 15.29 11.14 19.99 49.68 35.41 22.69 22.82 28.77 21.20 24.30 27.15
    Ba 226.7 359.2 665.8 299.9 18.77 21.73 69.00 77.20 594.0 673.0 588.2 405.9
    Cs 1.10 1.41 0.94 0.97 0.70 0.91 0.89 1.27 0.99 1.00 0.86 0.96
    Th 15.92 25.75 14.08 30.10 14.51 25.53 16.62 20.40 18.98 19.25 17.81 13.02
    U 0.66 1.65 0.73 2.83 3.38 3.63 2.18 4.49 2.06 3.05 2.34 1.95
    Nb 9.94 8.91 5.59 17.41 44.63 30.74 23.66 40.50 20.01 15.08 16.58 24.89
    Ta 0.54 1.03 0.52 1.53 2.91 2.53 2.21 4.10 1.50 1.02 1.05 2.39
    Ga 23.88 13.30 9.06 12.75 9.00 6.76 3.82 15.52 17.61 18.60 15.61 21.60
    Zr 108.2 99.89 65.76 75.32 183.3 128.7 106.5 123.5 111.8 127.1 98.59 183.4
    Hf 3.66 1.98 0.81 1.23 10.71 7.71 5.04 4.43 1.96 2.31 1.60 7.15
    Sn 1.22 2.26 1.82 1.91 3.97 1.67 2.23 1.81 2.21 1.85 1.93 2.66
    Cu 2.13 3.89 2.83 7.64 5.37 4.78 2.16 2.27 5.91 5.34 4.84 3.29
    Pb 10.52 21.75 20.07 15.40 14.59 9.97 7.02 9.12 33.23 34.37 51.19 12.20
    Zn 5.59 23.55 31.24 12.96 61.31 12.57 2.93 4.49 41.70 55.24 42.46 44.36
    Cr 5.08 4.62 1.48 2.72 1.90 2.33 2.44 0.71 2.99 3.11 6.51 5.19
    V 6.31 3.89 3.98 4.51 0.57 0.33 0.14 4.75 4.50 11.45 2.30 7.03
    B 1.97 5.49 4.61 5.70 1.08 1.01 1.62 1.97 4.44 6.34 4.46 5.80
    Li 3.24 5.80 9.27 3.59 1.60 4.51 5.00 3.65 9.63 4.89 3.71 4.46
    Be 1.12 2.80 1.77 3.41 6.10 5.03 3.62 3.30 2.47 2.60 2.44 2.55
    Sc 1.24 2.22 1.65 1.88 1.86 1.24 1.07 2.21 4.26 3.37 3.40 5.65
    Co 3.52 0.70 0.70 0.97 2.92 3.55 2.36 2.75 0.73 1.43 0.49 3.18
    Ni 2.85 3.42 1.23 1.68 0.59 0.38 0.10 0.68 2.62 2.47 3.79 0.45
    10000×Ga/Al 3.59 2.06 1.32 2.03 1.47 1.02 0.57 2.26 2.44 2.53 2.27 2.96
    Zr+Nb+Ce+Y 172.2 170.8 109.4 160.4 329.1 239.2 192.7 251.2 260.2 261.7 232.4 329.4
    TZr (℃) 749 751 716 725 778 771 740 745 755 769 749 722
    下载: 导出CSV

    表 3 

    昌图泥盆纪岩浆岩锆石Hf同位素分析结果

    Table 3. 

    Zircon Hf isotopic compositions of the Devonian magmatic rocks in the Changtu area

    测点号 Age (Ma) 2σ εHf(0) εHf(t) 2σ tDM1 (Ma) tDM2 (Ma) fLu/Hf
    235-20黑云母二长花岗岩
    -01 389 0.069670 0.002095 0.282760 0.000025 -0.4 7.6 0.9 718 897 -0.94
    -02 390 0.070345 0.002109 0.282789 0.000027 0.6 8.6 1.0 677 833 -0.94
    -03 390 0.054194 0.001645 0.282783 0.000019 0.4 8.5 0.7 677 839 -0.95
    -04 389 0.090101 0.002727 0.282729 0.000025 -1.5 6.4 0.9 776 977 -0.92
    -05 389 0.067989 0.002127 0.282799 0.000020 1.0 9.0 0.8 661 809 -0.94
    -06 390 0.058467 0.001802 0.282837 0.000024 2.3 10.4 0.9 600 718 -0.95
    -07 389 0.083402 0.002472 0.282803 0.000024 1.1 9.0 0.9 663 808 -0.93
    -08 388 0.071929 0.002195 0.282815 0.000021 1.5 9.5 0.8 640 776 -0.93
    -09 390 0.070785 0.002081 0.282842 0.000025 2.5 10.5 0.9 599 713 -0.94
    -10 388 0.054770 0.001667 0.282865 0.000024 3.3 11.4 0.9 558 654 -0.95
    235-9二长花岗岩
    -01 378 0.111469 0.003115 0.282931 0.000023 5.6 13.2 0.8 483 535 -0.91
    -02 378 0.080668 0.002310 0.282889 0.000026 4.1 11.9 0.9 534 617 -0.93
    -03 376 0.114160 0.003449 0.282846 0.000031 2.6 10.0 1.1 616 733 -0.90
    -04 377 0.086580 0.002556 0.282859 0.000023 3.1 10.7 0.8 582 689 -0.92
    -05 375 0.091398 0.002644 0.282958 0.000026 6.6 14.2 0.9 435 467 -0.92
    -06 374 0.105823 0.003066 0.282866 0.000027 3.3 10.8 1.0 579 682 -0.91
    -07 378 0.090058 0.002625 0.282888 0.000023 4.1 11.8 0.8 539 623 -0.92
    -08 378 0.106900 0.002987 0.282859 0.000020 3.1 10.7 0.7 588 694 -0.91
    -09 379 0.096520 0.002539 0.282921 0.000023 5.3 13.0 0.8 489 546 -0.92
    -10 377 0.068330 0.001955 0.282964 0.000022 6.8 14.6 0.8 419 442 -0.94
    下载: 导出CSV
  •  

    Blundy JD and Shimizu N. 1991. Trace element evidence for plagioclase recycling in calc-alkaline magmas. Earth and Planetary Science Letters, 102(2): 178-197 doi: 10.1016/0012-821X(91)90007-5

     

    Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63-114

     

    Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174

     

    Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 doi: 10.1016/S0024-4937(98)00086-3

     

    Chappell BW, Bryant CJ and Wyborn D. 2012. Peraluminous I-type granites. Lithos, 153: 142-153 doi: 10.1016/j.lithos.2012.07.008

     

    Chen JL, Guo YS and Fu SM. 2004. The research headway to granitoid: Classification review and synthesis of ISMA granitoid. Acta Geologica Gansu, 13(1): 67-73 (in Chinese with English abstract)

     

    Chen JS, Liu M, Li B, Li W, Li WW, Yang F and Wang Y. 2017. Zircon U-Pb chronology and geochemical characteristics of Late Silurian monzogranite in Ongniud Bannar, Inner Mongolia. Geological Bulletin of China, 36(8): 1359-1368 (in Chinese with English abstract)

     

    Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18 doi: 10.1016/S0012-8252(02)00107-1

     

    Dall'Agnol R, Scaillet B and Pichavant M. 1999. An experimental study of a Lower Proterozoic A-type granite from the Eastern Amazonian Craton, Brazil. Journal of Petrology, 40: 1673-1698 doi: 10.1093/petroj/40.11.1673

     

    Ewart A and Griffin WL. 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4): 251-284 doi: 10.1016/0009-2541(94)90131-7

     

    Freund S, Haase KM, Keith M, Beier C and Garbe-Schönberg D. 2014. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contributions to Mineralogy and Petrology, 167(2): 978 doi: 10.1007/s00410-014-0978-6

     

    Fu D, Huang B, Kusky TM, Li GZ, Wilde SA, Zhou WX and Yu Y. 2018. A middle Permian ophiolitic mélange belt in the Solonker suture zone, western Inner Mongolia, China: Implications for the evolution of the Paleo-Asian Ocean. Tectonics, 37(5): 1292-1320 doi: 10.1029/2017TC004947

     

    Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)

     

    Guan QB, Liu ZH, Liu YJ, Li SZ, Wang SJ, Chen ZX and Zhang C. 2022. A tectonic transition from closure of the Paleo-Asian Ocean to subduction of the Paleo-Pacific Plate: Insights from Early Mesozoic igneous rocks in eastern Jilin Province, NE China. Gondwana Research, 102: 332-353 doi: 10.1016/j.gr.2020.05.001

     

    Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648 doi: 10.1016/j.gca.2004.07.006

     

    Huang DL and Hou QY. 2017. Devonian alkaline magmatism in the northern North China Craton: Geochemistry, SHRIMP zircon U-Pb geochronology and Sr-Nd-Hf isotopes. Geoscience Frontiers, 8(1): 171-181 doi: 10.1016/j.gsf.2016.02.006

     

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 doi: 10.1139/e71-055

     

    Jahn BM, Wu FY and Chen B. 2000. Granitoids of the central Asian orogenic belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 doi: 10.1017/S0263593300007367

     

    Jia DC, Hu RZ, Lu Y and Qiu XL. 2004. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 23(2): 211-219 doi: 10.1016/S1367-9120(03)00123-8

     

    Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian orogenic belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101(3-4): 233-259 doi: 10.1016/j.lithos.2007.07.005

     

    Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang W, Zhang FQ, Miao LC, Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190 doi: 10.1016/j.lithos.2010.04.014

     

    Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224 doi: 10.1016/j.jseaes.2005.09.001

     

    Li YL, Brouwer FM, Xiao WJ and Zheng JP. 2017. Late Devonian to Early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian orogenic belt. GSA Bulletin, 129(5-6): 677-697 doi: 10.1130/B31511.1

     

    Lin W, Faure M, Nomade S, Shang QH and Renne PR. 2008. Permian-Triassic amalgamation of Asia: Insights from Northeast China sutures and their place in the final collision of North China and Siberia. Comptes Rendus Geoscience, 340(2-3): 190-201 doi: 10.1016/j.crte.2007.10.008

     

    Liu JF, Li JY, Chi XG, Feng QW, Hu ZC and Zhou K. 2013. Early Devonian felsic volcanic rocks related to the arc-continent collision on the northern margin of North China Craton: Evidences of zircon U-Pb dating and geochemical characteristics. Geological Bulletin of China, 32(2-3): 267-278 (in Chinese with English abstract)

     

    Liu JM, Zhao Y, Sun YL, Li DP, Liu J, Chen BL, Zhang SH and Sun WD. 2010. Recognition of the latest Permian to Early Triassic Cu-Mo mineralization on the northern margin of the North China block and its geological significance. Gondwana Research, 17(1): 125-134 doi: 10.1016/j.gr.2009.07.007

     

    Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148 doi: 10.1016/j.gr.2016.03.013

     

    Liu YJ, Feng ZQ, Jiang LW, Jin W, Li WM, Guan QB, Wen QB and Liang CY. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017-3047 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.10.05

     

    Luo ZK, Miao LC, Guan K, Qiu YS, Qiu YM, McNaughton NJ and Groves DI. 2001. SHRIMP chronological study of Shuiquangou intrusive body in Zhangjiakou area, Hebei province and its geochemical significance. Geochimica, 30(2): 116-122 (in Chinese with English abstract)

     

    Ma SX, Wang ZQ, Zhang YL and Sun JX. 2019. Bainaimiao arc as an exotic terrane along the northern margin of the North China Craton: Evidences from petrography, zircon U-Pb dating, and geochemistry of the Early Devonian deposits. Tectonics, 38: 2606-2624 doi: 10.1029/2018TC005426

     

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

     

    McDonough WF and Sun SS. 1995. Composition of the Earth. Chemical Geology, 120(3-4): 223-253 doi: 10.1016/0009-2541(94)00140-4

     

    Meng E, Xu WL, Pei FP and Wang F. 2011. Middle Devonian volcanism in eastern Heilongjiang Province and its tectonic implications: Constraints from petro-geochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica et Mineralogica, 30(5): 883-900 (in Chinese with English abstract)

     

    Miao LC, Fan WM, Liu DY, Zhang FQ, Shi YR and Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370 doi: 10.1016/j.jseaes.2007.11.005

     

    Niu XL, Liu F, Feng GY and Mao XH. 2021. Petrogenesis of the Late Silurian to Early Devonian potassic alkaline rocks on the northern margin of the North China Craton and their constraints on the tectonic evolution. Acta Petrologica et Mineralogica, 40(5): 835-858 (in Chinese with English abstract)

     

    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 doi: 10.1093/petrology/25.4.956

     

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 doi: 10.1007/BF00384745

     

    Pei FP, Zhang Y, Wang ZW, Cao HH, Xu WL, Wang ZJ, Wang F and Yang H. 2016. Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China. Lithos, 261: 164-180 doi: 10.1016/j.lithos.2015.12.010

     

    Peng YJ, Qi CD, Zhou XD, Lu XB, Dong HC and Li Z. 2012. Transition from paleo-Asian ocean domain to circum-Pacific ocean domain for the Ji-Hei composite orogenic belt: Time mark and relationship to global tectonics. Geology and Resources, 21(3): 261-265 (in Chinese with English abstract)

     

    Pitcher WS. 1997. The Nature and Origin of Granite. 2nd Edition. Dordrecht: Springer

     

    Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64

     

    Șengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 doi: 10.1038/364299a0

     

    Shi Y, Shi SS, Liu ZH, Wang L, Liu J, Chen JS, Yang F, Zhang C, Li B and Zhang LD. 2022. Back-arc system formation and extinction in the southern Central Asian Orogenic Belt: New constraints from the Faku ophiolite in north Liaoning, NE China. Gondwana Research, 103: 64-83 doi: 10.1016/j.gr.2021.11.011

     

    Shi YR, Liu DY, Miao LC, Zhang FQ, Jian P, Zhang W, Hou KJ and Xu JY. 2010. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632-641 doi: 10.1016/j.gr.2009.11.011

     

    Sisson TW, Ratajeski K, Hankins WB and Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6): 635-661 doi: 10.1007/s00410-004-0632-9

     

    Song SG, Wang MM, Xu X, Wang C, Niu YL, Allen MB and Su L. 2015. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics, 34(10): 2221-2248 doi: 10.1002/2015TC003948

     

    Sun LX, Ren BF, Teng F, Zhang Y, Gu YC and Guo H. 2015. LA-ICP-MS zircon U-Pb ages of the volcanoic rocks from the Chaotugou Formation in Aohan Banner, Inner Mongolia. Geological Bulletin of China, 34(8): 1493-1501 (in Chinese with English abstract)

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

     

    Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44 doi: 10.1016/S0024-4937(98)00024-3

     

    Tang KD. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics, 9(2): 249-260 doi: 10.1029/TC009i002p00249

     

    Teng XM, Yang QY and Santosh M. 2015. Devonian magmatism associated with arc-continent collision in the northern North China Craton: Evidence from the Longwangmiao ultramafic intrusion in the Damiao area. Journal of Asian Earth Sciences, 113: 626-643 doi: 10.1016/j.jseaes.2015.04.032

     

    Wang HC, Xiang ZQ, Zhao FQ, Li HM, Yuan GB and Chu H. 2012. The alkaline plutons in eastern part of Guyang county, Inner Mongolia: Geochronology, petrogenesis and tectonic implications. Acta Petrologica Sinica, 28(9): 2843-2854 (in Chinese with English abstract)

     

    Wang Q, Liu XY and Li JY. 1991. Plate Tectonics Between Cathaysia and Angaraland in China. Beijing: Peking University Press (in Chinese)

     

    Wang SQ, Hu XJ and Yang ZL. 2021. Late Paleozoic tectonic framework of the central Xing-Meng Orogenic Belt: Constrains from detrital and igneous zircon U-Pb geochronology of Late Devonian-Early Carboniferous Seribayanaobao Formation in southern Sunid Zuoqi. Acta Petrologica Sinica, 37(7): 2086-2102 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.07.08

     

    Wang YY, Xu B, Cheng SD, Liao W, Shao J and Wang Y. 2014. Zircon U-Pb dating of the mafic lava from Wudaoshimen, Hexigten, Inner Mongolia and its geological significance. Acta Petrologica Sinica, 30(7): 2055-2062 (in Chinese with English abstract)

     

    Wang ZW, Pei FP, Xu WL, Cao HH, Wang ZJ and Zhang Y. 2016. Tectonic evolution of the eastern Central Asian Orogenic Belt: Evidence from zircon U-Pb-Hf isotopes and geochemistry of Early Paleozoic rocks in Yanbian region, NE China. Gondwana Research, 38: 334-350 doi: 10.1016/j.gr.2016.01.004

     

    Watson EB and Capobianco CJ. 1981. Phosphorus and the rare earth elements in felsic magmas: An assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45(12): 2349-2358 doi: 10.1016/0016-7037(81)90088-0

     

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 doi: 10.1007/BF00402202

     

    Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 doi: 10.1144/0016-76492006-022

     

    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (Ⅰ): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273 doi: 10.1016/S0024-4937(02)00222-0

     

    Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

     

    Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 doi: 10.1007/s11430-016-5139-1

     

    Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069

     

    Xiao WJ, Song DF, Windley BF, Li JL, Han CM, Wan B, Zhang JE, Ao SJ and Zhang ZY. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Science China (Earth Sciences), 63(3): 329-361 doi: 10.1007/s11430-019-9524-6

     

    Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364 doi: 10.1016/j.gr.2012.05.015

     

    Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract)

     

    Xu B, Zhao P, Wang YY, Liao W, Luo ZW, Bao QZ and ZhouYH. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196 doi: 10.1016/j.jseaes.2014.07.020

     

    Xu BW, Xi AH, Ge YH, Liu Y, Wang MZ and Fang C. 2015. Zircon U-Pb ages of the Late Paleozoic A-type granites in Chifeng, Inner Mongolia and its tectonic significance. Acta Geologica Sinica, 89(1): 58-69 (in Chinese with English abstract)

     

    Xu WL, Wang F, Meng E, Gao FH, Pei FH, Yu JJ and Tang J. 2012. Paleozoic-Early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China: Evidence from igneous rock association and U-Pb geochronology of detrital zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract)

     

    Ye H, Zhang SH, Zhao Y, Liu JM and He ZF. 2014. Recognition of the latest Devonian volcanic rocks in Chifeng area, northern North China block, and its geological implications. Geological Bulletin of China, 33(9): 1274-1283 (in Chinese with English abstract)

     

    Zeng QD, Yang JH, Liu JM, Chu SX, Duan XX, Zhang ZL, Zhang WQ and Zhang S. 2012. Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton: Geochemistry, zircon U-Pb age and Sr-Nd-Pb isotopes. Geological Magazine, 149(5): 753-767 doi: 10.1017/S0016756811000987

     

    Zhang C, Shi SS, Shi Y, Wei MH, Yang F, Xu HF, Li WB and Wang LY. 2021. Tectonic evolution of northern margin of eastern North China Craton: Evidences of Middle Triassic plutons in Faku area, Liaoning Province. Journal of Jilin University (Earth Science Edition), 51(3): 734-748 (in Chinese with English abstract)

     

    Zhang JR, Wei CJ and Chu H. 2015. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 352-364 doi: 10.1016/j.jseaes.2014.07.032

     

    Zhang L, Zhang C, Liu YJ, Li WM, Ge JT, Feng ZQ, Chen JS and Fu JY. 2020. Geochronology and geochemistry of the Early Carboniferous meta-volcanic rocks, northern Liaoning Province: Implications for the tectonic evolution of the eastern segment of the northern margin of the North China Block. Acta Petrologica Sinica, 36(8): 2394-2412 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.08.08

     

    Zhang L. 2021. Late paleozoic tectonic evolution of the eastern segment of the northern margin of the North China Craton: Study on tectonic attributes of the Xia'ertai Group, northern Liaoning Province. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English abstract)

     

    Zhang QQ, Zhang SH, Zhao Y and Liu JM. 2018. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications. Lithos, 302-303: 496-518 doi: 10.1016/j.lithos.2018.01.019

     

    Zhang QQ and Zhang SH. 2019. Devonian magmatism in the northern margin of the North China Block and its tectonic setting. Journal of Geomechanics, 25(1): 125-138 (in Chinese with English abstract)

     

    Zhang QQ. 2021. Geological records of the Late Silurian-Devonian arc-continent collision in the northern margin of the North China Block and craton-orogen boundary. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English abstract)

     

    Zhang SH, Zhao Y, Song B and Liu DY. 2007. Petrogenesis of the Middle Devonian Gushan diorite pluton on the northern margin of the North China Block and its tectonic implications. Geological Magazine, 144(3): 553-568 doi: 10.1017/S0016756807003275

     

    Zhang SH, Zhao Y, Liu XC, Liu DY, Chen FK, Xie LW and Chen HH. 2009. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110(1-4): 229-246 doi: 10.1016/j.lithos.2009.01.008

     

    Zhang SH, Zhao Y, Liu JM, Hu JM, Song B, Liu J and Wu H. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824-842 (in Chinese with English abstract)

     

    Zhang SH, Zhao Y, Ye H, Liu JM and Hu ZC. 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. GSA Bulletin, 126(9-10): 1275-1300 doi: 10.1130/B31042.1

     

    Zhang W and Jian P. 2008. SHRIMP dating of Early Paleozoic granites from North Damaoqi, Inner Mongolia. Acta Geologica Sinica, 82(6): 778-787 (in Chinese with English abstract)

     

    Zhang W, Jian P, Kröner A and Shi YR. 2013. Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China. Journal of Asian Earth Sciences, 72: 63-74 doi: 10.1016/j.jseaes.2012.05.025

     

    Zhang XH, Zhang HF, Jiang N, Zhai MG and Zhang YB. 2010. Early Devonian alkaline intrusive complex from the northern North China Craton: A petrological monitor of post-collisional tectonics. Journal of the Geological Society, 167(4): 717-730 doi: 10.1144/0016-76492009-110

     

    Zhang YP, Su YZ and Li JY. 2010. Regional tectonics significance of the Late Silurian Xibiehe Formation in central Inner Mongolia, China. Geological Bulletin of China, 29(11): 1599-1605 (in Chinese with English abstract)

     

    Zhong DL, Tapponnier P, Wu HW, Zhang LS, Ji SC, Zhong JY, Liu XH, Schaerer U, Lacassin R and Leloup P. 1990. Large scale strike-slip fault: The major structure of intracontinental deformation after collision. Chinese Science Bulletin, 35(4): 304-309

     

    Zhou ZG, Zhang D, Gu YC, Wang GS, Li YH, Yu YS, Liu CF and Liu WC. 2018. Characteristics of Bainaimiao thrust belt along central Inner Mongolia in North China and its geological significance. Geotectonica et Metallogenia, 42(1): 1-17 (in Chinese with English abstract)

     

    Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239 doi: 10.1007/s11430-009-0132-x

     

    陈建林, 郭原生, 付善明. 2004. 花岗岩研究进展——ISMA花岗岩类分类综述. 甘肃地质学报, 13(1): 67-73 https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200401008.htm

     

    陈井胜, 刘淼, 李斌, 李伟, 李崴崴, 杨帆, 汪岩. 2017. 内蒙古翁牛特旗晚志留世二长花岗岩年代学及地球化学特征. 地质通报, 36(8): 1359-1368 doi: 10.3969/j.issn.1671-2552.2017.08.006

     

    耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 508-1513 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110005.htm

     

    刘建峰, 李锦轶, 迟效国, 冯乾文, 胡兆初, 周坤. 2013. 华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩——锆石U-Pb定年及地球化学证据. 地质通报, 32(2-3): 267-278 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1005.htm

     

    刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017-3047 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2019.10.05

     

    罗镇宽, 苗来成, 关康, 裘有守, Qiu YM, McNaughton NJ, Groves DI. 2001. 河北张家口水泉沟岩体SHRIMP年代学研究及其意义. 地球化学, 30(2): 116-122 doi: 10.3321/j.issn:0379-1726.2001.02.002

     

    孟恩, 许文良, 裴福萍, 王枫. 2011. 黑龙江省东部中泥盆世火山作用及其构造意义——来自岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素的制约. 岩石矿物学杂志, 30(5): 883-900 doi: 10.3969/j.issn.1000-6524.2011.05.012

     

    牛晓露, 刘飞, 冯光英, 毛小红. 2021. 华北克拉通北缘晚志留世末-早泥盆世钾质碱性岩的成因及对区域构造演化的限定. 岩石矿物学杂志, 40(5): 835-858 doi: 10.3969/j.issn.1000-6524.2021.05.001

     

    彭玉鲸, 齐成栋, 周晓东, 卢兴波, 董红辰, 李状. 2012. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换: 时间标志与全球构造的联系. 地质与资源, 21(3): 261-265 doi: 10.3969/j.issn.1671-1947.2012.03.001

     

    孙立新, 任邦方, 滕飞, 张永, 谷永昌, 郭虎. 2015. 内蒙古敖汉旗朝吐沟组火山岩LA-ICP-MS锆石U-Pb年龄. 地质通报, 34(8): 1493-1501 doi: 10.3969/j.issn.1671-2552.2015.08.009

     

    王惠初, 相振群, 赵凤清, 李惠民, 袁桂邦, 初航. 2012. 内蒙古固阳东部碱性侵入岩: 年代学、成因与地质意义. 岩石学报, 28(9): 2843-2854 http://www.ysxb.ac.cn/article/id/aps_20120914

     

    王荃, 刘雪亚, 李锦轶. 1991. 中国华夏与安加拉古陆间的板块构造. 北京: 北京大学出版社

     

    王树庆, 胡晓佳, 杨泽黎. 2021. 兴蒙造山带中部晚古生代构造格局: 来自晚泥盆-早石炭世色日巴彦敖包组碎屑锆石和火山岩岩浆锆石年代学的制约. 岩石学报, 37(7): 2086-2102 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.07.08

     

    王炎阳, 徐备, 程胜东, 廖闻, 邵军, 汪岩. 2014. 内蒙古克什克腾旗五道石门基性火山岩锆石U-Pb年龄及其地质意义. 岩石学报, 30(7): 2055-2062 http://www.ysxb.ac.cn/article/id/aps_20140718

     

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220 http://www.ysxb.ac.cn/article/id/aps_20070223

     

    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm

     

    肖文交, 宋东方, Windley BF, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(地球科学), 49(10): 1512-1545 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm

     

    徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857 http://www.ysxb.ac.cn/article/id/aps_20140701

     

    徐博文, 郗爱华, 葛玉辉, 刘珏, 王明智, 房超. 2015. 内蒙古赤峰地区晚古生代A型花岗岩锆石U-Pb年龄及构造意义. 地质学报, 89(1): 58-69 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501005.htm

     

    许文良, 王枫, 孟恩, 高福红, 裴福萍, 于介江, 唐杰. 2012. 黑龙江省东部古生代-早中生代的构造演化: 火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205012.htm

     

    叶浩, 张拴宏, 赵越, 刘建民, 何哲峰. 2014. 内蒙古赤峰地区泥盆纪晚期火山岩的发现及其地质意义. 地质通报, 33(9): 1274-1283 doi: 10.3969/j.issn.1671-2552.2014.09.002

     

    张超, 石邵山, 时溢, 魏明辉, 杨帆, 郇横飞, 李文博, 王路远. 2021. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据. 吉林大学学报(地球科学版), 51(3): 734-748 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103008.htm

     

    张丽, 张超, 刘永江, 李伟民, 葛锦涛, 冯志强, 陈井胜, 付俊彧. 2020. 辽北地区早石炭世变质火山岩年代学和地球化学特征: 对华北板块北缘东段构造演化的启示. 岩石学报, 36(8): 2394-2412 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2020.08.08

     

    张丽. 2021. 华北板块北缘东段晚古生代构造演化——辽北地区下二台岩群构造属性研究. 博士学位论文. 长春: 吉林大学

     

    张琪琪, 张拴宏. 2019. 华北地块北缘泥盆纪岩浆活动及其构造背景. 地质力学学报, 25(1): 125-138 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201901053.htm

     

    张琪琪. 2021. 华北地块北缘晚志留世-泥盆纪弧-陆碰撞的地质记录及克拉通与造山带边界. 博士学位论文. 北京: 中国地质科学院

     

    张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842 doi: 10.3969/j.issn.1000-6524.2010.06.017

     

    张维, 简平. 2008. 内蒙古达茂旗北部早古生代花岗岩类SHRIMP U-Pb年代学. 地质学报, 82(6): 778-787 doi: 10.3321/j.issn:0001-5717.2008.06.007

     

    张允平, 苏养正, 李景春. 2010. 内蒙古中部地区晚志留世西别河组的区域构造学意义. 地质通报, 29(11): 1599-1605 doi: 10.3969/j.issn.1671-2552.2010.11.001

     

    周志广, 张达, 谷永昌, 王果胜, 李红英, 於炀森, 柳长峰, 刘文灿. 2018. 内蒙古白乃庙逆冲推覆构造特征及其地质意义. 大地构造与成矿学, 42(1): 1-17 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201801001.htm

     

    朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833-848 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm

  • 加载中

(11)

(3)

计量
  • 文章访问数:  1287
  • PDF下载数:  162
  • 施引文献:  0
出版历程
收稿日期:  2022-02-01
修回日期:  2022-04-30
刊出日期:  2022-08-01

目录