安徽泾县湛岭斑岩型钼矿床中铼的赋存状态研究

陈雪锋, 范裕, 周涛发. 2021. 安徽泾县湛岭斑岩型钼矿床中铼的赋存状态研究. 岩石学报, 37(9): 2705-2722. doi: 10.18654/1000-0569/2021.09.07
引用本文: 陈雪锋, 范裕, 周涛发. 2021. 安徽泾县湛岭斑岩型钼矿床中铼的赋存状态研究. 岩石学报, 37(9): 2705-2722. doi: 10.18654/1000-0569/2021.09.07
CHEN XueFeng, FAN Yu, ZHOU TaoFa. 2021. The occurrence of rhenium in the Zhanling porphyry molybdenum deposit, Jing County, Anhui Province. Acta Petrologica Sinica, 37(9): 2705-2722. doi: 10.18654/1000-0569/2021.09.07
Citation: CHEN XueFeng, FAN Yu, ZHOU TaoFa. 2021. The occurrence of rhenium in the Zhanling porphyry molybdenum deposit, Jing County, Anhui Province. Acta Petrologica Sinica, 37(9): 2705-2722. doi: 10.18654/1000-0569/2021.09.07

安徽泾县湛岭斑岩型钼矿床中铼的赋存状态研究

  • 基金项目:

    本文受国家自然科学基金项目(41872081、91962218)和中央高校基本科研业务费专项(PA2019GDZC0093)联合资助

详细信息
    作者简介:

    陈雪锋, 男, 1989年生, 博士, 地质学专业, E-mail: xfchen2016@126.com

    通讯作者: 范裕, 男, 1982年生, 教授, 博士生导师, 矿物学、岩石学、矿床学专业, E-mail: fanyu@hfut.edu.cn
  • 中图分类号: P618.65;P618.87

The occurrence of rhenium in the Zhanling porphyry molybdenum deposit, Jing County, Anhui Province

More Information
  • 铼(Re)作为关键金属之一,是国家安全和军事战略必不可少的关键矿产,近年来受到世界各国的广泛关注。目前全球90%的Re产出于斑岩型矿床中,由于Re和Mo(钼)的元素性质相近,辉钼矿是Re的主要富集矿物。目前,前人的研究主要集中于含Re辉钼矿多型、辉钼矿中Re的含量、以及微米尺度上Re在辉钼矿中的赋存规律等方面,但纳米尺度上,Re在辉钼矿中的赋存状态研究仍十分薄弱。本次工作以安徽省泾县新发现的湛岭斑岩型钼矿床中的辉钼矿为研究对象,查明矿床中的辉钼矿主要有两种类型:粗粒叶片状辉钼矿(Ⅰ型)和细粒集合体辉钼矿(Ⅱ型)。通过电子探针(EPMA)和激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)确定了微米尺度上辉钼矿中的Re含量呈较大的不均一性。粗粒叶片状辉钼矿核部的Re含量(90.2×10-6)高于边部(37.6×10-6),细粒集合体辉钼矿中的Re平均含量(89.4×10-6)明显高于粗粒叶片状辉钼矿(50.0×10-6),其中可见多个无规律的局部Re富集区域。在此基础上,对细粒集合体辉钼矿中富Re区域进行聚焦离子束(FIB)原位取样,并运用透射电镜(TEM)分析发现,在纳米尺度上,辉钼矿Re含量也有较大不均一性。在ADF-TEM照片中识别出辉钼矿具有a、b两种不同的表征。表征a的辉钼矿Re含量较高,晶格受到明显干扰,除类质同象替换外,还存在以Re-S吸附的方式赋存的Re;而表征b中的辉钼矿Re含量较低,晶格并未受到明显的干扰,Re主要是以类质同象替换的形式存在。以上研究结果表明,湛岭斑岩型钼矿床中的Re除了类质同象替代Mo进入辉钼矿晶格外,还以Re-S的形式吸附在辉钼矿晶格表面,Re的两种赋存状态是辉钼矿中Re含量不均一性的主要原因。

  • 加载中
  • 图 1 

    湛岭钼矿床区域地质图(据江西省地质矿产局, 1984修改)

    Figure 1. 

    Geological map of the Zhanling molybdenum deposit (modified after BGMRJ, 1984)

    图 2 

    湛岭钼矿床矿区地质略图(据安徽同跃矿业有限公司, 2011)

    Figure 2. 

    Geological map of the Zhanling molybdenum deposit

    图 3 

    湛岭钼矿床辉钼矿矿石手标本和反射光镜下照片

    Figure 3. 

    Hand specimens and microstructural features of the molybdenite from the Zhanling molybdenum deposit

    图 4 

    湛岭钼矿床中辉钼矿(样品12-204)面扫描微量元素分布图

    Figure 4. 

    The trace element mapping of molybdenite (Sample 12-204) from Zhanling molybdenum deposit

    图 5 

    湛岭钼矿床中辉钼矿(样品12-407)面扫描微量元素分布图

    Figure 5. 

    The trace element mapping of molybdenite (Sample 12-407) from Zhanling molybdenum deposit

    图 6 

    湛岭钼矿床中辉钼矿(样品12-576)的微量元素分布图

    Figure 6. 

    The trace element mapping of molybdenite (Sample 12-576) from Zhanling molybdenum deposit

    图 7 

    湛岭钼矿床辉钼矿FIB取样位置及HAADF-EDS面扫描图

    Figure 7. 

    The FIB location and HAADF-EDS mapping of the molybdenite in Zhanling molybdenum deposit

    图 8 

    湛岭钼矿床中辉钼矿不同区域对应的Re元素波峰图及原子分数值

    Figure 8. 

    Peak value and atomic faction of rhenium in different area of molybdenite in the Zhanling molybdenum deposit

    图 9 

    湛岭钼矿床辉钼矿样品中呈带状表征(表征a)的辉钼矿TEM高分辨率图

    Figure 9. 

    High resolution TEM image of the belt molybdenite in Zhanling molybdenum deposit

    图 10 

    湛岭钼矿床呈面状表征(表征b)的辉钼矿TEM高分辨率图

    Figure 10. 

    High resolution TEM image of the planar molybdenite in Zhanling molybdenum deposit

    图 11 

    湛岭钼矿床中辉钼矿多型XRD谱图

    Figure 11. 

    The XRD spectral diagrams of the molybdenite from Zhanling molybdenum deposit

    图 12 

    湛岭钼矿床辉钼矿中Mo与Ag、Fe、Mn、Pb、Re、W、V、Ti、Cu的相互关系图解

    Figure 12. 

    Diagrams of the relationship between Mo and Ag, Fe, Mn, Pb, re, W, V, Ti and Cu in molybdenite of Zhanling molybdenum deposit

    图 13 

    2H型辉钼矿中Re原子在辉钼矿中的赋存方式(据Lin et al., 2014)

    Figure 13. 

    Occurrence mode of rhenium atoms in 2H-type molybdenite (after Lin et al., 2014)

    图 14 

    湛岭钼矿床辉钼矿中表征a(a、c)和表征b(b、d)的Re原子替换模型

    Figure 14. 

    Occurrence mode of rhenium atoms in the characteristic a (a, c) and b (b, d) in the molybdenite from the Zhanling molybdenum deposit

    表 1 

    湛岭钼矿床中辉钼矿电子探针成分(wt%)数据表

    Table 1. 

    Representative EPMA of chemical composition (wt%) of molybdenite from the Zhanling molybdenum deposit

    测点号 Mo S As Cr Fe Mn Ni W Zn Cu Total
    12-204-1(Ⅰ型) 59.42 40.15 Bdl 0.15 Bdl Bdl 0.02 0.09 Bdl 0.07 99.89
    12-204-2(Ⅰ型) 59.54 40.15 Bdl 0.19 Bdl Bdl Bdl 0.03 0.10 Bdl 100.0
    12-204-3(Ⅰ型) 59.15 40.49 0.02 0.09 Bdl 0.01 Bdl Bdl 0.04 0.02 99.80
    12-204-4(Ⅱ型) 59.18 40.47 Bdl 0.13 0.08 Bdl Bdl 0.02 Bdl Bdl 99.88
    12-204-5(Ⅱ型) 59.09 40.23 Bdl 0.19 0.14 Bdl 0.01 0.11 Bdl 0.05 99.81
    12-407-1(Ⅱ型) 59.53 40.10 Bdl 0.23 0.00 Bdl Bdl Bdl Bdl Bdl 99.86
    12-407-3(Ⅱ型) 59.29 40.57 Bdl Bdl 0.03 Bdl 0.01 Bdl 0.07 Bdl 99.97
    12-407-4(Ⅱ型) 58.99 40.84 Bdl 0.01 0.01 Bdl Bdl 0.03 0.03 0.06 99.96
    12-407-5(Ⅰ型) 59.92 39.65 Bdl 0.15 Bdl Bdl Bdl Bdl 0.09 0.11 99.93
    12-576-1(Ⅰ型) 59.55 40.03 Bdl 0.10 0.02 Bdl Bdl 0.09 Bdl 0.12 99.92
    12-576-2(Ⅰ型) 60.01 39.85 Bdl Bdl 0.04 Bdl Bdl Bdl 0.02 0.02 99.95
    12-576-4(Ⅱ型) 60.23 39.60 Bdl 0.04 0.02 0.01 0.01 0.03 Bdl 0.01 99.96
    12-576-5(Ⅰ型) 59.07 40.80 0.02 0.00 0.03 Bdl 0.03 Bdl Bdl 0.04 99.96
    注:Bdl为低于0.01检测限
    下载: 导出CSV

    表 2 

    湛岭钼矿床中辉钼矿微量元素(×10-6)数据表

    Table 2. 

    Trace element compositions (×10-6) of molybdenite analyzed by LA-ICP-MS from Zhanling molybdenum deposit

    测点号 Sc Ti V Cr Mn Co Ni Zn As Ag Cd Sn W Re Au Pb
    12-204-1(Ⅰ型) 0.00 11.1 6.04 4.92 0.00 0.04 1.93 0.00 3.83 1.06 6.37 0.00 21.3 43.2 0.11 23.7
    12-204-2(Ⅰ型) 0.15 11.5 3.24 4.18 0.00 0.00 2.13 0.09 0.14 1.67 6.42 0.03 15.4 54.3 0.01 18.1
    12-204-3(Ⅰ型) 0.00 18.0 3.06 0.00 0.00 0.02 0.00 1.44 1.17 0.00 7.58 0.00 14.6 90.2 0.27 35.2
    12-204-4(Ⅱ型) 0.00 4.86 3.34 46.3 0.00 1.70 0.73 0.39 0.73 2.67 4.21 0.00 16.6 204 0.00 35.1
    12-407-1(Ⅱ型) 0.00 0.00 8.21 367 0.00 77.7 23.2 271 16.7 1.11 0.00 4.55 32.1 37.6 0.00 16.2
    12-407-3(Ⅱ型) 0.03 19.0 18.6 45.1 0.00 21.1 2.34 3.45 1.70 2.03 7.23 0.00 38.8 56.2 0.00 23.5
    12-407-4(Ⅱ型) 1.75 11.0 36.3 8.23 11.3 34.8 2.45 62.9 3.50 1.45 6.70 0.20 38.7 61.4 0.18 15.1
    12-407-5(Ⅰ型) 1.99 18.1 65.6 472 8.95 22.4 2.68 27.2 3.67 1.78 6.79 0.57 29.7 26.1 0.02 17.2
    12-576-1(Ⅰ型) 0.03 19.0 14.7 10.2 0.31 0.63 0.00 3.75 0.14 4.49 8.74 0.19 27.2 38.0 0.00 28.1
    12-576-2(Ⅰ型) 0.02 9.80 16.7 18.4 4.28 0.78 0.67 7.17 2.17 1.17 6.56 0.00 45.5 49.0 0.18 16.3
    12-576-4(Ⅱ型) 0.00 17.1 8.41 2.65 2.86 2.31 0.00 6.70 33.0 15.7 5.37 0.00 30.9 87.6 0.63 20.1
    下载: 导出CSV

    表 3 

    湛岭钼矿床辉钼矿不同区域对应的元素原子分数统计表

    Table 3. 

    Atomic faction of rhenium in different area of molybdenite in Zhanling molybdenum deposit

    元素 原子分数(%) 误差(%) 元素 原子分数(%) 误差(%)
    Area#1 Area#3
    S 39.7 7.38 S 58.9 8.72
    Fe 0.39 0.1 Fe 0.3 0.07
    Mo 58.4 13.9 Mo 39.8 8.33
    W 0.43 0.1 W 0.31 0.06
    Re 0.48 0.11 Re 0.29 0.06
    Pb 0.62 0.14 Pb 0.43 0.08
    Area#2 Area#4
    S 60 8.67 S 35.3 6.85
    Fe 0.25 0.06 Fe 0.51 0.13
    Mo 38.7 8.03 Mo 62.8 15.3
    W 0.29 0.06 W 0.35 0.08
    Re 0.27 0.05 Re 0.41 0.09
    Pb 0.45 0.09 Pb 0.62 0.14
    下载: 导出CSV
  •  

    Ataca C and Ciraci S. 2011. Functionalization of single-layer MoS2 honeycomb structures. The Journal of Physical Chemistry C, 115(27): 13303-13311 doi: 10.1021/jp2000442

     

    Bureau of Geology and Mineral Resources of Jiangxi Province (BGMRJ). 1984. Regional Geology of Jiangxi Province. Beijing: Geological Publishing House (in Chinese)

     

    Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 71-76 (in Chinese)

     

    Chang YF, Li JH and Song CZ. 2019. The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 35(12): 3579-3591 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.12.01

     

    Chen FG. 1987. Rhenium in the molybdenite of the molybdenum deposit (for mainly Dashigou deposit) in the eastern part of Qinling, Shaanxi. Geology of Shaanxi, 5(2): 59-67 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SXDY198702007.htm

     

    Chen J. 2019. Enrichment and efficient utilization of critical metals. Science & Technology Review, 37(24): 1-10 (in Chinese) http://www.researchgate.net/publication/337493850_Critical_scientific_issues_of_super-enrichment_of_dispersed_metals

     

    Chen XF. 2020. Magmatism and metallogenies of Zhanling rhenium-molybdenum deposit in the Jiangnan uplift belt (Anhui Province). Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-239 (in Chinese with English summary)

     

    Chi DZ, Goh JKE and Wee ATS. 2019. 2D Semiconductor Materials and Devices. Amsterdam: Elsevier

     

    Dare SAS, Barnes SJ, Prichard HM and Fisher PC. 2011. Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Mineralium Deposita, 46(4): 381-407 doi: 10.1007/s00126-011-0336-9

     

    Ge B. 2018. Study on the relationship between alteration zoning and mineralization of the Zhanling molybdenum deposit in Jingxian County. Geology of Anhui, 28(4): 276-279 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-AHDZ201804008.htm

     

    He DF and Shang SG. 2018. Geological characteristics of the Zhanling molybdenum deposit and ore prospecting direction in Jing County, Anhui Province. Geology of Anhui, 28(1): 43-46, 60 (in Chinese with English abstract)

     

    Hou MJ. 2005. The magmatic activities and its depth process of the Later Yanshannian granitoids in the Jiangnan uplift in the area of Anhui Province. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-115 (in Chinese with English summary)

     

    Hou ZQ, Chen J and Zhai MG. 2020. Current status and frontiers of research on critical mineral resources. Chinese Science Bulletin, 65(33): 3651-3652 (in Chinese) doi: 10.1360/TB-2020-1417

     

    Huang F, Wang DH, Wang Y, Jiang B, Li C and Zhao H. 2019. Study on metallogenic regularity rhenium deposits in China and their prospecting direction. Acta Geologica Sinica, 93(6): 1252-1269 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201906007.htm

     

    Jiang SY, Wen HJ, Xu C, Wang Y, Su HM and Sun WD. 2019. Earth sphere cycling and enrichment mechanism of critical metals: Major scientific issues for future research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJJ201902003.htm

     

    Li M and Zhang ZJ. 2006. The metamorphic deformational temperature-pressure conditions of the folded basement in the Jiangnan Uplift. Acta Geoscientica Sinica, 27(6): 543-550 (in Chinese with English abstract) http://www.oalib.com/paper/1557739

     

    Li XY, Zhu ZM, Xiong WL and Ji CQ. 2020. Overview of the occurrence state of the rhenium element. Multipurpose Utilization of Mineral Resources, (6): 193-200, 147 (in Chinese with English abstract)

     

    Li ZX, Li XH, Kinny PD, Wang J, Zhang S and Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109 doi: 10.1016/S0301-9268(02)00208-5

     

    Lin YC, Dumcenco DO, Huang YS and Suenaga K. 2014. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotechnology, 9(5): 391-396 doi: 10.1038/nnano.2014.64

     

    Lin YC, Li SS, Komsa HP, Chang LJ, Krasheninnikov AV, Eda G and Suenaga K. 2018. Revealing the atomic defects of WS2 governing its distinct optical emissions. Advanced Functional Materials, 28(4): 1704210 doi: 10.1002/adfm.201704210

     

    Liu GL, Robertson AW, Li MMJ, Kuo WCH, Darby MT, Muhieddine MH, Lin YC, Suenaga K, Stamatakis M, Warner JH and Tsang SCE. 2017. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nature Chemistry, 9(8): 810-816 doi: 10.1038/nchem.2740

     

    Liu HZ, Wang W, Cao YH and Gao ZG. 2014. World rhenium resources and market situation, conservation and utilization of mineral resources. Conservation and Utilization of Mineral Resources, (5): 55-58 (in Chinese) http://d.wanfangdata.com.cn/periodical/kcbhyly201405018

     

    Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ and Zhang JR. 1984. Element Geochemistry. Beijing: Science Press, 1-548 (in Chinese)

     

    Mao JW, Yuan SD, Xie GQ, Song SW, Zhou Q, Gao YB, Liu X, Fu XF, Cao J, Zeng ZL, Li TG and Fan XY. 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract)

     

    Newberry RJJ. 1979. Polytypism in molybdenite (Ⅰ): A non-equilibrium impurity-induced phenomenon. American Mineralogist, 64: 758-767

     

    Robertson AW, Lin YC, Wang SS, Sawada H, Allen CS, Chen Q, Lee S, Lee GD, Lee J, Han S, Yoon E, Kirkland AI, Kim H, Suenaga K and Warner JH. 2016. Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2. ACS Nano, 10(11): 10227-10236 doi: 10.1021/acsnano.6b05674

     

    Schulz KJ, DeYoung JH Jr, Seal RR II and Bradley DC. 2017. Critical mineral resources of the United States-economic and environmental geology and prospects for future supply. U.S. Geological Survey Professional Paper 1802 http://pubs.usgs.gov/pp/1802/cover/pp1802frontmatter.pdf

     

    Seltmann R, Shatov V and Yakubchuk A. 2005. Mineral deposits database and thematic maps of Central Asia, scale 1: 1500000: Explanatory Notes to ArcView 3.2 and Map info 7 GIS packages. London: Centre for Russian and Central Asian Mineral Studies

     

    Tang X and Li JH. 2021. Transmission electron microscopy: New advances and applications for earth and planetary sciences. Earth Science, 46(4): 1374-1415 (in Chinese with English abstract)

     

    Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the Along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-351 (in Chinese with English abstract)

     

    Voudouris PC, Melfos V, Spry PG, Bindi L, Kartal T, Arikas K, Moritz R and Ortelli M. 2009. Rhenium-rich molybdenite and rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au prospect, northern Greece: Implications for the Re geochemistry of porphyry-style Cu-Mo and Mo mineralization. The Canadian Mineralogist, 47(5): 1013-1036 doi: 10.3749/canmin.47.5.1013

     

    Wang DH, Wang RJ, Li JK, Zhao Z, Sun Y, Yu Y, Zhao T, Dai JJ, Wang CH, Huang F, Liu LJ and Dai HZ. 2016. The development of new high-tech industries and the investigation of three rare (rare earth, rare metal and dispersed element) mineral resources. Geological Review, 62(Suppl. 1): 423-425 (in Chinese with English abstract)

     

    Wang FY, Ge C, Ning SY, Nie LQ, Zhong GX and White NC. 2017. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrologica Sinica, 33(11): 3422-3436 (in Chinese with English abstract)

     

    Wang RJ, Wang DH, Li JK et al. 2015. Rare Earth Mineral Resources and Their Development and Utilization. Beijing: Geological Publishing House, 1-429 (in Chinese)

     

    Yang MZ. 1983. New genetic types of rhenium deposits and their geological prospecting directions. Geology-Geochemistry, (1): 13-14 (in Chinese)

     

    Yang YP, Yao JM, Tao Q, Zhu JX and He HP. 2019. Discovery of layered PbS in molybdenite. In: Abstracts of Papers from the 17th Annual Meeting of Chinese Society for Mineral and Rock Geochemistry. Hangzhou: Chinese Society for Mineral and Rock Geochemistry, 78-79 (in Chinese)

     

    Yang ZM, Hou ZQ, Zhou LM and Zhou YW. 2020. Critical elements in porphyry copper deposits of China. Chinese Science Bulletin, 65(33): 3653-3664 (in Chinese) doi: 10.1360/TB-2020-0246

     

    Zhai MG, Wu FY, Hu RZ, Jiang SY, Li WC, Wang RC, Wang DH, Qi T, Qin KZ and Wen HJ. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract)

     

    Zhang KH, Feng SM, Wang JJ, Azcatl A, Lu N, Addou R, Wang N, Zhou CJ, Lerach J, Bojan V, Kim MJ, Chen LQ, Wallace RM, Terrones M, Zhu J and Robinson JA. 2015. Manganese doping of monolayer MoS2: The substrate is critical. Nano Letters, 15(10): 6586-6591 doi: 10.1021/acs.nanolett.5b02315

     

    Zhou CJ, Zhang GY and Zhang DC. 2021. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits. Bulletin of Geological Science and Technology, 40(4): 115-130 (in Chinese with English abstract)

     

    Zhou TF, Fan Y, Chen J, Xiao X and Zhang S. 2020. Critical metal resources in the Middle-Lower Yangtze River Valley metallogenic belt. Chinese Science Bulletin, 65(33): 3665-3677 (in Chinese) doi: 10.1360/TB-2020-0347

     

    Zhou W, Zou XL, Najmaei S, Liu Z, Shi YM, Kong J, Lou J, Ajayan PM, Yakobson BI and Idrobo JC. 2013. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 13(6): 2615-2622 doi: 10.1021/nl4007479

     

    Мхитарян РГ и Хуршудян ЭХ. 1981. Политипия Минералов как типоморфное свойство. Издателство А Н Армянской ССР: 1-242 (in Russian)

     

    Попов ВС. 1977. Геология и генезис медно и молибден-порфировых месторождении. Академия Наука СССР: 1-201 (in Russian)

     

    Родзаевский ВВ. 1970. Рении. Сырьеные ресурсы итехнология производства. Цветметинформация: 99 (in Russian)

     

    常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 71-76

     

    常印佛, 李加好, 宋传中. 2019. 长江中下游成矿带区域构造格局的新认识. 岩石学报, 35(12): 3579-3591 doi: 10.18654/1000-0569/2019.12.01 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20191201&journal_id=ysxb

     

    陈福根. 1987. 陕西秦岭东部钼矿床(大石沟矿床为主)中辉钼矿内的铼. 陕西地质, 5(2): 59-67 https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY198702007.htm

     

    陈骏. 2019. 关键金属超常富集成矿和高效利用. 科技导报, 37(24): 1-10 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201924002.htm

     

    陈雪锋. 2020. 江南隆起带(安徽段)湛岭铼钼矿床的成岩成矿作用研究. 博士学位论文. 合肥: 合肥工业大学, 1-239

     

    葛兵. 2018. 泾县湛岭钼矿床蚀变分带与矿化关系研究. 安徽地质, 28(4): 276-279 doi: 10.3969/j.issn.1005-6157.2018.04.008

     

    何德锋, 尚世贵. 2018. 安徽省泾县湛岭钼矿床地质特征及找矿方向. 安徽地质, 28(1): 43-46, 60 doi: 10.3969/j.issn.1005-6157.2018.01.010

     

    侯明金. 2005. 江南隆起带(安徽部分)燕山晚期岩浆活动与深部过程. 博士学位论文. 合肥: 合肥工业大学, 1-115

     

    侯增谦, 陈骏, 翟明国. 2020. 战略性关键矿产研究现状与科学前沿. 科学通报, 65(33): 3651-3652 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033002.htm

     

    黄凡, 王登红, 王岩, 江彪, 李超, 赵鸿. 2019. 中国铼矿成矿规律和找矿方向研究. 地质学报, 93(6): 1252-1269 doi: 10.3969/j.issn.0001-5717.2019.06.007

     

    蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902003.htm

     

    江西省地质矿产局. 1984. 江西省区域地质志. 北京: 地质出版社

     

    李民, 章泽军. 2006. 江南隆起带褶皱基底变质变形温压条件研究. 地球学报, 27(6): 543-550 doi: 10.3321/j.issn:1006-3021.2006.06.004

     

    李潇雨, 朱志敏, 熊文良, 冀成庆. 2020. 铼元素赋存状态综述. 矿产综合利用, (6): 193-200, 147 doi: 10.3969/j.issn.1000-6532.2020.06.032

     

    刘红召, 王威, 曹耀华, 高照国. 2014. 世界铼资源及市场现状. 矿产保护与利用, (5): 55-58 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201405018.htm

     

    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社, 1-548

     

    毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm

     

    唐旭, 李金华. 2021. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用. 地球科学, 46(4): 1374-1415 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104015.htm

     

    唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1-351

     

    王登红, 王瑞江, 李建康, 赵芝, 孙艳, 于扬, 赵汀, 代晶晶, 王成辉, 黄凡, 刘丽君, 代鸿章. 2016. 新兴产业的发展与三稀矿产的调查. 地质论评, 62(增1): 423-425 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904010.htm

     

    汪方跃, 葛粲, 宁思远, 聂利青, 钟国雄, White NC. 2017. 一个新的矿物面扫描分析方法开发和地质学应用. 岩石学报, 33(11): 3422-3436 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20171106&journal_id=ysxb

     

    王瑞江, 王登红, 李建康等. 2015. 稀有稀土稀散矿产资源及其开发利用. 北京: 地质出版社, 1-429

     

    杨敏之. 1983. 含铼矿床的新成因类型及其地质找矿方向. 地质地球化学, (1): 13-14 https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm

     

    杨宜坪, 姚军明, 陶奇, 朱建喜, 何宏平. 2019. 辉钼矿中层状PbS的发现. 见: 中国矿物岩石地球化学学会第17届学术年会论文摘要集. 杭州: 中国矿物岩石地球化学学会, 78-79

     

    杨志明, 侯增谦, 周利敏, 周怿惟. 2020. 中国斑岩铜矿床中的主要关键矿产. 科学通报, 65(33): 3653-3664 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm

     

    翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm

     

    周成胶, 张刚阳, 张丁川. 2021. 铼金属矿床类型、元素赋存形式和富集机制. 地质科技通报, 40(4): 115-130 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104011.htm

     

    周涛发, 范裕, 陈静, 肖鑫, 张舒. 2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665-3677 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033004.htm

  • 加载中

(14)

(3)

计量
  • 文章访问数:  1126
  • PDF下载数:  86
  • 施引文献:  0
出版历程
收稿日期:  2021-06-02
修回日期:  2021-08-21
刊出日期:  2021-09-01

目录