Mecanismos asociados con la modificación del endospermo en maíz de calidad proteínica

Modificación del endospermo en maíz

Autores/as

  • D Gonzalez-Nuñez Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Av. Américas y Josefa Ortíz de Dominguez S/N, CP 80010, Culiacán, Sinaloa, México https://orcid.org/0009-0004-1540-0338
  • KV Pineda-Hidalgo Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Av. Américas y Josefa Ortíz de Dominguez S/N, CP 80010, Culiacán, Sinaloa, México https://orcid.org/0000-0003-3721-307X
  • N Salazar-Salas Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Av. Américas y Josefa Ortíz de Dominguez S/N, CP 80010, Culiacán, Sinaloa, México https://orcid.org/0000-0001-7261-6857
  • JA López-Valenzuela Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Av. Américas y Josefa Ortíz de Dominguez S/N, CP 80010, Culiacán, Sinaloa, México https://orcid.org/0000-0002-9358-5030

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1905

Palabras clave:

Zea mays L., modificación del endospermo, almidón, zeínas

Resumen

El maíz de calidad proteínica (MCP) combina la calidad proteínica de la mutante opaco-2 (o2) con un endospermo vítreo. Estas características han permitido a los programas de mejoramiento alrededor del mundo producir genotipos MCP que ayudan a aliviar la malnutrición de la gente en países en desarrollo de África, Asia y América Latina con una dieta basada en cereales. Sin embargo, el desarrollo de estos materiales ha sido poco eficiente debido al limitado conocimiento acerca de las bases moleculares de la conversión del endospermo suave o2 en un fenotipo vítreo en MCP. Esta conversión se ha asociado con el incremento en cuerpos proteínicos pequeños ricos en γ-zeína de 27 kDa, la síntesis de almidón con una mayor proporción de amilosa y ramificaciones de amilopectina cortas-intermedias que favorece la compactación de los gránulos de almidón, así como alteraciones en la envoltura de los amiloplastos que favorece la interacción entre gránulos de almidón y cuerpos proteínicos. Estudios adicionales sobre los mecanismos involucrados en la modificación del endospermo en MCP contribuirán a producir materiales con buenas características agronómicas y buena calidad proteínica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akalu, G., Taffesse, S., Gunaratna, N.S. and De Groote, H. 2010. The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food and Nutrition Bulletin 31: 418-430. DOI: https://doi.org/10.1177/156482651003100304

Babu, R., Nair, S.K., Kumar, A., Venkatesh, S., Sekhar, J.C., Singh, N.N., Srinivasan, G. and Gupta, H.S. 2005. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theoretical and Applied Genetics 111: 888-897. DOI: https://doi.org/10.1007/s00122-005-0011-6

Burnett, R. and Larkins, B. 1999. Opaque2 modifiers alter transcription of the 27-kDa γ-zein genes in maize. Molecular Genetics and Genomics 261: 908-916. DOI: https://doi.org/10.1007/s004380051038

Chand, G., Muthusamy, V., Allen, T., Zunjare, R.U., Mishra, S.J., Singh, B., Mehta, B.K., Talukder, Z.A., Ismail, M.R., Sarika, K., Kamboj, M.C., Singh, S. and Hossain, F. 2022. Composition of lysine and tryptophan among biofortified-maize possessing novel combination of opaque2 and opaque16 genes. Journal of Food Composition and Analysis 107: 104376. DOI: https://doi.org/10.1016/j.jfca.2021.104376

Coleman, C.E. and Larkins, B.A. 1999. The prolamins of maize. In: Seed Proteins. P.R. Shewry and R. Casey (eds.), pp. 109-139. Kluwer Academic, Dordrecht, Netherlands. DOI: https://doi.org/10.1007/978-94-011-4431-5_6

Comparot-Moss, S. and Denyer, K. 2009. The evolution of the starch biosynthetic pathway in cereals and other grasses. Journal of Experimental Botany 60: 2481-2492. DOI: https://doi.org/10.1093/jxb/erp141

Cordova, H. 2001. The quality protein maize revolution: improved nutrition and livelihoods for the poor. In: Maize Research Highlights 1999-2000. pp. 27-31. CIMMYT, México.

Coutiño Estrada, B. and Vázquez Carrillo, G. 2018. V238AC: new QPM yellow grain corn variety. Revista Mexicana de Ciencias Agrícolas 9: 1089-1092. DOI: https://doi.org/10.29312/remexca.v9i5.1513

Coutiño Estrada, B., Vázquez Carrillo, G. and Vidal Martínez, V.A. 2022. V56AC, first yellow grain QPM Oloton maize variety for the high valleys of Chiapas, Mexico. Revista Fitotecnia Mexicana 45: 149-151. DOI: https://doi.org/10.35196/rfm.2022.1.149

Das, O., Levi-Minzi, S., Koury, M., Benner, M. and Messing, J. 1990. A somatic gene rearrangement contributing to genetic diversity in maize. Proceedings of the National Academy of Sciences USA 87: 7809. DOI: https://doi.org/10.1073/pnas.87.20.7809

Das, O.P., Poliak, E., Ward, K. and Messing, J. 1991. A new allele of the duplicated 27 kD zein locus of maize generated by homologous recombination. Nucleic Acids Research 19: 3325-3330. DOI: https://doi.org/10.1093/nar/19.12.3325

Desalegn, B.B., Abegaz, K. and Kinfe, E. 2015. Effect of blending ratio and processing technique on physicochemical composition, functional properties and sensory acceptability of quality protein maize (QPM) based complementary food. International Journal of Food Science and Nutrition Engineering 5: 121-129.

FAOSTAT. 2022. Food and Agriculture Organization Statistical Database. Food and Agriculture Organization of the United Nations. [Accessed August 18, 2022]. Available in http://faostat.fao.org.

Geetha, K., Lending, C., Lopes, M., Wallace, J. and Larkins, B. 1991. Opaque-2 modifiers increase gamma-zein synthesis and alter its spatial distribution in maize endosperm. Plant Cell 3: 1207-1219. DOI: https://doi.org/10.1105/tpc.3.11.1207

Gevers, H.O. and Lake, J.K. 1992. Development of modified opaque2 maize in South Africa. In: Quality Protein Maize. E.T. Mertz (ed.), pp. 49-78. American Association of Cereal Chemists, Saint Paul, Minnesota.

Gibbon, B.C. and Larkins, B.A. 2005. Molecular genetic approaches to developing quality protein maize. Trends in Genetics 21: 227-233. DOI: https://doi.org/10.1016/j.tig.2005.02.009

Gibbon, B.C., Wang, X. and Larkins, B.A. 2003. Altered starch structure is associated with endosperm modification in Quality Protein Maize. Proceedings of the National Academy of Sciences USA 100: 15329-15334. DOI: https://doi.org/10.1073/pnas.2136854100

Gómez-M, N., Sierra-M, M., Cantú-A, M.A., Rodríguez-M, F.A., Manjarrez-S, M., González-C, M., Espinosa-C, A., Betanzos-M, E., Córdova-O, H., Caballero-H, F., Turrent-F, A., García-B, A., Ramírez, G., Sandoval-R, A., Coutiño-E, B., Cervantes-M, E., Reyes-M, C. and Nava-V, L. 2003. V-537C and V-538C, new high quality protein maize varieties for the Mexican tropics. Revista Fitotecnia Mexicana 26: 213-214. DOI: https://doi.org/10.35196/rfm.2003.3.213

Gonzalez-Nuñez, D.G. 2022. Análisis de expresión génica y actividad de enzimas de síntesis de almidón y su asociación con la modificación del endospermo en maíz de calidad proteínica. Ph.D Thesis, Universidad Autónoma de Sinaloa. Culiacán, Sinaloa.

Grover, K., Arora, S. and Choudhary, M. 2020. Development of quality protein product using biofortified maize to combat malnutrition among young children. Cereal Chemistry 97: 1037-1044. DOI: https://doi.org/10.1002/cche.10326

Gunaratna, N.S., Groote, H.D., Nestel, P., Pixley, K.V. and McCabe, G.P. 2010. A meta-analysis of community-based studies on quality protein maize. Food Policy 35: 202-210. DOI: https://doi.org/10.1016/j.foodpol.2009.11.003

Gunaratna, N.S., Moges, D. and De Groote, H. 2019. Biofortified maize can improve quality protein intakes among young children in southern Ethiopia. Nutrients 11: 192-207. DOI: https://doi.org/10.3390/nu11010192

Guo, X., Ronhovde, K., Yuan, L., Yao, B., Soundararajan, M.P., Elthon, T., Zhang, C. and Holding, D.R. 2012. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase induction and attenuation of Hsp gene expression during endosperm modification in quality protein maize. Plant Physiology 158: 917-929. DOI: https://doi.org/10.1104/pp.111.191163

Guo, X., Yuan, L., Chen, H., Sato, S.J., Clemente, T.E. and Holding, D.R. 2013. Nonredundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm. Plant Physiology 162: 1359-1369. DOI: https://doi.org/10.1104/pp.113.218941

Gupta, H.S., Agrawal, P.K., Mahajan, V., Bisht, G.S., Kumar, A., Verma, P., Srivastava, A., Saha, S., Babu, R., Pant, M.C. and Mani, V.P. 2009. Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Current Science 96: 230-237.

Gupta, H.S., Raman, B., Agrawal, P.K., Mahajan, V., Hossain, F. and Thirunavukkarasu, N. 2013. Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breeding 132: 77-82. DOI: https://doi.org/10.1111/pbr.12009

Gutiérrez-Dorado, R., Ayala-Rodríguez, A.E., Milán-Carrillo, J., López-Cervantes, J., Garzón-Tiznado, J.A., López-Valenzuela, J.A., Paredes-López, O. and Reyes-Moreno, C. 2008. Technological and nutritional properties of flours and tortillas from nixtamalized and extruded quality protein maize (Zea mays L.). Cereal Chemistry 85: 808-816. DOI: https://doi.org/10.1094/CCHEM-85-6-0808

Holding, D.R., Hunter, B.G., Chung, T., Gibbon, B.C., Ford, C.F., Bharti, A.K., Messing, J., Hamaker, B.R. and Larkins, B.A. 2008. Genetic analysis of opaque2 modifier loci in quality protein maize. Theoretical and Applied Genetics 117: 157-170. DOI: https://doi.org/10.1007/s00122-008-0762-y

Holding, D.R., Hunter, B.G., Klingler, J.P., Wu, S., Guo, X., Gibbon, B.C., Wu, R., Schulze, J.-M., Jung, R. and Larkins, B.A. 2011. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred. Plant Molecular Biology 122: 783-794. DOI: https://doi.org/10.1007/s00122-010-1486-3

Hossain, F., Muthusamy, V., Pandey, N., Vishwakarma, A.K., Baveja, A., Zunjare, R.U., Thirunavukkarasu, N., Saha, S., Manjaiah, K.M.M., Prasanna, B.M. and Gupta, H.S. 2018. Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics 97: 287-298. DOI: https://doi.org/10.1007/s12041-018-0914-z

Hossain, F., Sarika, K., Muthusamy, V., Zunjare, R.U. and Gupta, H.S. 2019. Quality protein maize for nutritional security. In: Quality Breeding in Field Crops. A.M.I. Qureshi, Z.A. Dar and S.H. Wani (eds.), pp. 217-237. Springer International Publishing, Cham. DOI: https://doi.org/10.1007/978-3-030-04609-5_11

Huang, L., Tan, H., Zhang, C., Li, Q. and Liu, Q. 2021. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Communications 2: 100237. DOI: https://doi.org/10.1016/j.xplc.2021.100237

Huang, S., Frizzi, A., Florida, C.A., Kruger, D.E. and Luethy, M.H. 2006. High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD alpha-zeins. Plant Molecular Biology 61: 525-535. DOI: https://doi.org/10.1007/s11103-006-0027-6

Jane, J., Chen, Y., Lee, L., McPherson, A., Wong, K., Radosavljevic, M. and Kasemsuwan, T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry 76: 629-637. DOI: https://doi.org/10.1094/CCHEM.1999.76.5.629

Jia, M., Wu, H., Clay, K.L., Jung, R., Larkins, B.A. and Gibbon, B.C. 2013. Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2 mutant by transcriptional and proteomic analysis. BMC Plant Biology 13: 60. DOI: https://doi.org/10.1186/1471-2229-13-60

Jiang, Y., Sun, K. and An, X. 2022. CRISPR/Cas system: applications and prospects for maize improvement. ACS Agricultural Science & Technology 2: 174-183. DOI: https://doi.org/10.1021/acsagscitech.1c00253

Jilo, T. 2022. Nutritional benefit and development of quality protein maize (QPM) in Ethiopia: review article. Cereal Research Communications 50: 559-572. DOI: https://doi.org/10.1007/s42976-021-00211-8

Juárez-García, E., Agama-Acevedo, E., Gómez-Montiel, N.O., Pando-Robles, V. and Bello-Pérez, L.A. 2013. Proteomic analysis of the enzymes involved in the starch biosynthesis of maize with different endosperm type and characterization of the starch. Journal of the Science of Food and Agriculture 93: 2660-2668. DOI: https://doi.org/10.1002/jsfa.6054

Kodrzycki, R., Boston, R.S. and Larkins, B.A. 1989. The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell 1: 105-114. DOI: https://doi.org/10.1105/tpc.1.1.105

Kostadinovic, M., Ignjatovic-Micic, D., Vancetovic, J., Ristic, D., Bozinovic, S., Stankovic, G. and Mladenovic Drinic, S. 2016. Development of high tryptophan maize near isogenic lines adapted to temperate regions through marker assisted selection - impediments and benefits. PloS One 11: e0167635. DOI: https://doi.org/10.1371/journal.pone.0167635

Krishna, M.S.R., Sokka Reddy, S. and Satyanarayana, S.D.V. 2017. Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7. 3 Biotech 7: 165. DOI: https://doi.org/10.1007/s13205-017-0842-2

Krivanek, A.F., De Groote, H., Gunaratna, N.S., Diallo, A.O. and Friesen, D. 2007. Breeding and disseminating quality protein maize (QPM) for Africa. African Journal of Biotechnology 6: 312-324.

Larkins, B.A. 2019. Proteins of the kernel. In: Corn: Chemistry and Technology. S.O. Serna-Saldivar (ed.), pp. 319-336. Woodhead Publishing and AACC International Press, Duxford, U.K. DOI: https://doi.org/10.1016/B978-0-12-811971-6.00012-7

Lending, C. and Larkins, B. 1989. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011. DOI: https://doi.org/10.2307/3869002

Li, C., Xiang, X., Huang, Y., Zhou, Y., An, D., Dong, J., Zhao, C., Liu, H., Li, Y., Wang, Q., Du, C., Messing, J., Larkins, B.A., Wu, Y. and Wang, W. 2020. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communications 11: 17. DOI: https://doi.org/10.1038/s41467-019-14023-2

Liu, H., Shi, J., Sun, C., Gong, H., Fan, X., Qiu, F., Huang, X., Feng, Q., Zheng, X., Yuan, N., Li, C., Zhang, Z., Deng, Y., Wang, J., Pan, G., Han, B., Lai, J. and Wu, Y. 2016. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America 113: 4964-4969. DOI: https://doi.org/10.1073/pnas.1601352113

Lopes, M.A. and Larkins, B.A. 1991. Gamma-zein content is related to endosperm modification in Quality Protein Maize. Crop Science 31: 1655-1662. DOI: https://doi.org/10.2135/cropsci1991.0011183X003100060055x

Lopes, M.A., Takasaki, K., Bostwick, D.E., Helentjaris, T. and Larkins, B.A. 1995. Identification of two opaque2 modifier loci in Quality Protein Maize. Molecular Genetics and Genomics 247: 603-613. DOI: https://doi.org/10.1007/BF00290352

Lopez-Valenzuela, J.A., Gibbon, B.C., Holding, D.R. and Larkins, B.A. 2004. Cytoskeletal proteins are coordinately increased in maize genotypes with high levels of eEF1A. Plant Physiology 135: 1784-1797. DOI: https://doi.org/10.1104/pp.104.042259

Maqbool, M.A., Issa, A.B. and Khokhar, E.S. 2021. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breeding 140: 375-399. DOI: https://doi.org/10.1111/pbr.12923

Mertz, E.T., Bates, L.S. and Nelson, O.E. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145: 279-280. DOI: https://doi.org/10.1126/science.145.3629.279

Muleya, M., Tang, K., Broadley, M.R., Salter, A.M. and Joy, E.J.M. 2022. Limited supply of protein and lysine is prevalent among the poorest households in Malawi and exacerbated by low protein quality. Nutrients 14: 2430. DOI: https://doi.org/10.3390/nu14122430

Nakamura, Y., Francisco, P.B., Hosaka, Y., Sato, A., Sawada, T., Kubo, A. and Fujita, N. 2005. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Molecular Biology 58: 213-227. DOI: https://doi.org/10.1007/s11103-005-6507-2

Noriega González, L.A., Preciado Ortiz, R.E., Andrio Enríquez, E., Terrón Ibarra, A.D. and Covarrubias Prieto, J. 2011. Phenology, plant growth and floral synchrony of the parental lines of H-374C QPM maize hybrid. Revista Mexicana de Ciencias Agrícolas 2: 489-500. DOI: https://doi.org/10.29312/remexca.v2i4.1635

Or, E., Boyer, S.K. and Larkins, B.A. 1993. Opaque2 modifiers act post-transcriptionally and in a polar manner on gamma-zein gene expression in maize endosperm. Plant Cell 5: 1599-1609. DOI: https://doi.org/10.1105/tpc.5.11.1599

Paez, A.V., Helm, J.L. and Zuber, M.S. 1969. Lysine content of opaque-2 maize kernels having different phenotypes. Crop Science 9: 251-252. DOI: https://doi.org/10.2135/cropsci1969.0011183X000900020045x

Pfister, B. and Zeeman, S.C. 2016. Formation of starch in plant cells. Cellular and Molecular Life Sciences 73: 2781-2807. DOI: https://doi.org/10.1007/s00018-016-2250-x

Pineda-Hidalgo, K.V., Lavin-Aramburo, M., Salazar-Salas, N.Y., Chavez-Ontiveros, J., Reyes-Moreno, C., Muy-Rangel, M.D., Larkins, B.A. and Lopez-Valenzuela, J.A. 2011. Characterization of free amino acid QTLs in maize opaque2 recombinant inbred lines. Journal of Cereal Science 53: 250-258. DOI: https://doi.org/10.1016/j.jcs.2011.01.005

Ren, Y., Yobi, A., Marshall, L., Angelovici, R., Rodriguez, O. and Holding, D.R. 2018. Generation and evaluation of modified opaque-2 popcorn suggests a route to quality protein popcorn. Frontiers in Plant Science 9: 1803-1803. DOI: https://doi.org/10.3389/fpls.2018.01803

Robyt, J.F. 2009. Enzymes and Their Action on Starch. In: Starch (Third Edition). J. BeMiller and R. Whistler (eds.), pp. 237-292. Academic Press, San Diego. DOI: https://doi.org/10.1016/B978-0-12-746275-2.00007-0

Salazar-Salas, N.Y., Pineda-Hidalgo, K.V., Chavez-Ontiveros, J., Gutierrez-Dorado, R., Reyes-Moreno, C., Bello-Pérez, L.A., Larkins, B.A. and Lopez-Valenzuela, J.A. 2014. Biochemical characterization of QTLs associated with endosperm modification in quality protein maize. Journal of Cereal Science 60: 255-263. DOI: https://doi.org/10.1016/j.jcs.2014.04.004

Sawada, T., Itoh, M. and Nakamura, Y. 2018. Contributions of three starch branching enzyme isozymes to the fine structure of amylopectin in rice endosperm. 9. DOI: https://doi.org/10.3389/fpls.2018.01536

Serna-Saldivar, S.O. 2019. Corn: Chemistry and Technology. 3rd ed. Woodhead Publishing and AACC International Press. Duxford, U.K.

Sethi, M., Singh, A., Kaur, H., Phagna, R.K., Rakshit, S. and Chaudhary, D.P. 2021. Expression profile of protein fractions in the developing kernel of normal, Opaque-2 and quality protein maize. Scientific Reports 11: 2469. DOI: https://doi.org/10.1038/s41598-021-81906-0

Sierra Macías, M., Palafox Caballero, A., Rodríguez Montalvo, F., Espinosa Calderón, A., Vázquez Carrillo, G., Gómez Montiel, N. and Barrón Freyre, S. 2011. H-564C, high quality protein maize hybrid for the humid tropic in Mexico. Revista Mexicana de Ciencias Agrícolas 2: 71-84.

Surender, M., Shetti, P., Sagare, D.B., Rani, C.V.D., Jabeen, F., M.R., S. and Reddy, S.S. 2017. Development of QPM version of DHM117 maize hybrid using marker assisted selection. International Journal of Current Microbiology and Applied Sciences 6: 3275-3289. DOI: https://doi.org/10.20546/ijcmas.2017.610.384

Twumasi-Afriyie, S., Palacios-Rojas, N., Friesen, D., Teklewold, A., Wegary, D., De Groote, H. and Prasanna, B.M. 2016. Guidelines for the quality control of Quality Protein Maize (QPM) seed and grain. CIMMYT, Addis Ababa, Ethiopia.

Vega-Alvarez, E., Pineda-Hidalgo, K.V., Salazar-Salas, N.Y., Soto-López, O.A., Canizalez-Roman, V.A., Garzón-Tiznado, J.A., Gutierrez-Dorado, R. and Lopez-Valenzuela, J.A. 2022. Genetic and molecular analysis of starch physicochemical properties and its relationship with endosperm modification in quality protein maize. Biotecnia XXIV: 140-149. DOI: https://doi.org/10.18633/biotecnia.v24i3.1725

Villegas, E., Vasal, S., Bjarnason, M. and Mertz, E. 1992. Quality protein maize-what is it and how was it developed. In: Quality Protein Maize. E.T. Mertz (ed.), pp. 27-48. American Society of Cereal Chemists, Saint Paul, Minnesota.

Vivek, B.S., Krivanek, A.F., Palacios-Rojas, N., Twumasi-Afriyie, S. and Diallo, A.O. 2008. Breeding quality protein maize (QPM): protocols for developing QPM cultivars. CIMMYT, Mexico, D.F.

Wallace, J.C., Lopes, M.A., Paiva, E. and Larkins, B.A. 1990. New methods for extraction and quantitation of zeins reveal a high content of γ-zein in modified opaque-2 maize. Plant Physiology 92: 191-196. DOI: https://doi.org/10.1104/pp.92.1.191

Wang, H., Huang, Y., Xiao, Q., Huang, X., Li, C., Gao, X., Wang, Q., Xiang, X., Zhu, Y., Wang, J., Wang, W., Larkins, B.A. and Wu, Y. 2020. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nature Communications 11: 5346. DOI: https://doi.org/10.1038/s41467-020-19196-9

Wang, W., Niu, S., Dai, Y., Wang, M., Li, Y., Yang, W. and Zhao, D. 2019. The Zea mays mutants opaque2 and opaque16 disclose lysine change in waxy maize as revealed by RNA-Seq. Scientific Reports 9: 12265. DOI: https://doi.org/10.1038/s41598-019-48478-6

Worral, H.M., Scott, M.P. and Hallauer, A.R. 2015. Registration of temperate quality protein maize (QPM) lines BQPM9, BQPM10, BQPM11, BQPM12, BQPM13, BQPM14, BQPM15, BQPM16, and BQPM17. Journal of Plant Registrations 9: 371-375. DOI: https://doi.org/10.3198/jpr2014.11.0080crg

Wu, H., Clay, K., Thompson, S.S., Hennen-Bierwagen, T.A., Andrews, B.J., Zechmann, B. and Gibbon, B.C. 2015. Pullulanase and starch synthase III are associated with formation of vitreous endosperm in quality protein maize. PloS One 10: e0130856. DOI: https://doi.org/10.1371/journal.pone.0130856

Wu, Y., Holding, D.R. and Messing, J. 2010. γ-zeins are essential for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences USA 107: 12810-12815. DOI: https://doi.org/10.1073/pnas.1004721107

Yang, L., Wang, W., Yang, W. and Wang, M. 2013. Marker-assisted selection for pyramiding the waxy and opaque16 genes in maize using cross and backcross schemes. Molecular Breeding 31: 767-775. DOI: https://doi.org/10.1007/s11032-012-9830-8

Yuan, L., Dou, Y., Kianian, S.F., Zhang, C. and Holding, D.R. 2014. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque2 endosperm modification. Plant Physiology 164: 119-130. DOI: https://doi.org/10.1104/pp.113.230961

Zhou, Z., Song, L., Zhang, X., Li, X., Yan, N., Xia, R., Zhu, H., Weng, J., Hao, Z., Zhang, D., Yong, H., Li, M. and Zhang, S. 2016. Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PloS One 11: e0158971. DOI: https://doi.org/10.1371/journal.pone.0158971

Resumen gráfico

Publicado

2023-04-21

Cómo citar

González-Núñez, D. G. ., Pineda-Hidalgo, K. V. ., Salazar-Salas, N. Y. ., & López-Valenzuela, J. A. . (2023). Mecanismos asociados con la modificación del endospermo en maíz de calidad proteínica: Modificación del endospermo en maíz. Biotecnia, 25(2), 79–89. https://doi.org/10.18633/biotecnia.v25i2.1905

Número

Sección

Artículos de revisión

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.