In Silico Screening of a Phytochemical Naringin, Isolated from Citrus decumana var. paradisi Against the Genes of Polycystic Ovary Syndromenes of Polycystic Ovary Syndrome

Jump To References Section

Authors

  • Department of Botany, Guru Nanak Khalsa College, Matunga, Mumbai - 400019, Maharashtra ,IN
  • Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai - 400098, Maharashtra ,IN
  • Department of Physics, Guru Nanak Khalsa College, Matunga, Mumbai - 400019, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jnr/2024/36383

Keywords:

Citrus decumana var. paradisi, CYP 17, Hyperandrogenism, Molecular Docking, Polycystic Ovary Syndrome

Abstract

Polycystic Ovary Syndrome (PCOS) is a complex hormonal and metabolic disorder. The overproduction of androgens is the primary feature of PCOS. The currently available pharmacological agents recommended for the treatment of PCOS are linked with several adverse effects. Therefore, herbal-based drugs with lesser side effects, have become a favourable trend among people. A flavonoid glycoside, naringin isolated from different fruit parts of Citrus decumana var. paradisi (Macfad.) H.H.A. Nicholls exhibits a wide range of therapeutic properties. In the traditional system of medicine, it is used to improve ovarian health. To set down scientific evidence, molecular docking analysis was performed to find out the binding affinity of compound naringin with the protein CYP 17-cytochrome P 450, attributing to hyperandrogenism due to its overexpression, leading to PCOS. The docking score values were compared with the standard drug metformin to interpret the effectiveness of flavonoid naringin in the treatment of PCOS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-04-18

How to Cite

Rana, B., Merwyn Dcosta, & Arvind Singh. (2024). <i>In Silico</i> Screening of a Phytochemical Naringin, Isolated from <i>Citrus decumana</i> var. <i>paradisi</i> Against the Genes of Polycystic Ovary Syndromenes of Polycystic Ovary Syndrome. Journal of Natural Remedies, 24(4), 897–903. https://doi.org/10.18311/jnr/2024/36383

Issue

Section

Short Communication

Categories

Received 2024-01-28
Accepted 2024-02-29
Published 2024-04-18

 

References

Deswal R, Narwal V, Dang A, Pundir CS. The prevalence of polycystic ovary syndrome: A brief systematic review. J Hum Reprod Sci. 2020; 13(4):261-71. https://doi.org/10.4103/jhrs.JHRS_95_18 PMid: 33627974 PMCid: PMC7879843.

Amudha M, Rani S. Assessing the bioactive constituents of Cadaba fruticosa (L.) druce through GC-MS. Int J Pharm. 2014; 6(2):383-5.

Sidra S, Tariq MH, Farrukh MJ, Mohsin M. Evaluation of clinical manifestations, health risks and quality of life among women with polycystic ovary syndrome. PloS one. 2019; 14(10):1-17. https://doi.org/10.1371/journal.pone.0223329 PMid:31603907 PMCid: PMC6788722.

Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, Kumar M. Polycystic ovary syndrome: Etiology, current management and future therapeutics. J Clin Med. 2023; 12(4):1454. https://doi.org/10.3390/ jcm12041454 PMid:36835989 PMCid: PMC9964744.

McCartney CR, Eagleson CA, Marshall JC. Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. In Semin Reprod Med. 2002; 20(4):317-26. https://doi.org/10.1055/s-2002-36706 PMid:12536355.

Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008; 14(4):367-78. https://doi.org/10.1093/humupd/ dmn015 PMid:18499708.

Homburg R. Adverse effects of luteinising hormone on fertility: Fact or fantasy. Baillieres Clin Obstet Gynaecol. 1998; 12(4):555-63. https://doi.org/10.1016/ S0950-3552(98)80051-5 PMid:10627767.

Marx TL, Mehta AE. Polycystic ovary syndrome: Pathogenesis and treatment over the short and long term. Cleve Clin J Med. 2003; 70(1):31-45. https://doi.org/10.3949/ccjm.70.1.31 PMid:12549723.

Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016; 37(5):467-520. https://doi.org/10.1210/er.2015-1104 PMid:27459230 PMCid: PMC5045492.

Kamboj A, Verma D, Sharma D, Pant K, Pant B, Kumar V. A molecular docking study towards finding herbal treatment against Polycystic Ovary Syndrome (PCOS). Int J Recent Technol Eng. 2020; 8:38-41.

https://doi.org/10.35940/ijrte.B1006.0982S1219

Dhanalaxshmi G, Bagchi P, Anuradha M. In silico study of a phytochemical component of Angelica sinensis with Genes of Polycystic Ovarian Syndrome. ICAN-2023. 2023; 69:199-211. https://doi.org/10.2991/97894-6463-294-1_17.

Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: An overview. Pharm Biol. 2016; 54(12):3203-10. https://doi.org/10.1080/13880209.2016.12 16131 PMid:27564838.

Shashank S, Gayatri R, Payal M. Retaliating properties of naringin: A mini-review. Am J Biomed Sci and Res. 2022; 17(5). https://doi.org/10.34297/AJBSR.2022.17.002381

Gade R, Dwarampudi LP, Dharshini SP, Raj RK. Polycystic ovarian syndrome (PCOS): Approach to traditional systems, natural and bio-chemical compounds for its management. Indian J Biochem Biophys. 2022; 59(5):521-7.

Babita R, Pandit HM. Quantitative analysis of flavonoid ‘Naringin’a natural product and its correlation with antioxidant activity in different fruit fractions of grapefruit, Citrus decumana var. paradisi (Macfad.) H.H.A. Nicholls: Use of industrial waste. Int J Pharm Bio Sci. 2017; 8(2):71521. https://doi.org/10.22376/ijpbs.2017.8.2.b715-721

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. NAR. 2000; 28(1):23542. PMid:10592235 PMCid: PMC102472. https://doi.org/10.1093/nar/28.1.235

RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. NAR. 2023; 51:D488–D508. https://doi.org/10.1093/ nar/gkac1077

O Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminf. 2011; 3(1):1-4. PMid:21982300 PMCid: PMC3198950. https://doi.org/10.1186/1758-29463-33

Cherinka B, Andrews BH, Sánchez-Gallego J, Brownstein J, Argudo-Fernández M, Blanton M, Bundy K, Jones A, Masters K, Law DR, Rowlands K. Marvin: A tool kit for streamlined access and visualization of the SDSSIV MaNGA data set. Astron J. 2019; 158(2):74.

Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsanyi E, Kovacs B. Phytochemical properties, extraction and pharmacological benefits of naringin: A review. Molecules. 2023; 28(15):5623. PMid:37570594 PMCid: PMC10419872. https://doi.org/10.3390/molecules28155623

Butkiewicz M, Lowe Jr EW, Mueller R, Mendenhall JL, Teixeira PL, Weaver CD, Meiler J. Benchmarking ligandbased virtual high-throughput screening with the PubChem database. Molecules. 2013; 18(1):735-56. https://doi.org/10.3390/molecules18010735 PMid:23299552 PMCid: PMC3759399.

Palani M, Natesan K, Vaiyapuri M. Computational studies on different types of apoptotic proteins docked with a dietary flavonoid eriodictyol in colon cancer. Asian J Pharm Clin Res. 2017; 10(1):223-6.

Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. NAR. 2018; 46(W1):W363-7. https://doi.org/10.1093/ nar/gky473

Trott O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455-461. https://doi.org/10.1002/jcc.21334

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):278591. PMid:19399780 PMCid:PMC2760638. https://doi.org/10.1002/jcc.21256

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2. 0: New docking methods, expanded force field and Python bindings. J Chem Inf Model. 2021; 61(8):3891-8. PMid:34278794 PMCid: PMC10683950. https://doi.org/10.1021/acs.jcim.1c00203

Release S. 4(2018). Maestro, Schrödinger, LLC, New York, NY.

Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA.

NAR. 2021; 49(W1):W530-4. https://doi.org/10.1093/nar/gkab294

Laskowski RA, Swindells MB. LigPlot+: multiple ligandprotein interaction diagrams for drug discovery. J Chem Inf Model. 2011; 51(10):2778-86. https://doi.org/10.1021/ ci200227u PMID: 21919503.

Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995; 8(2):127-34. https://doi.org/10.1093/protein/8.2.127 PMid:7630882.

Rajan RK, Balaji B. Soy isoflavones exert beneficial effects on letrozole-induced rat polycystic ovary syndrome (PCOS) model through anti-androgenic mechanism. Pharm Biol. 2017; 55(1):242-51. https://doi.org /10.1080/13880209.2016.1258425 PMid:27927075 PMCid: PMC6130471.

Darabi P, Khazali H, Mehrabani Natanzi M. Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: via modulation of pro-inflammatory cytokines and antioxidant activity. J Gynaecol Endocrinol. 2020; 36(7):582-7. https://doi.org/10.1080/09513590.2019.1706084 PMid:31888395.

Han YH, Kee JY, Park J, Kim DS, Shin S, Youn DH, Kang J, Jung Y, Lee YM, Park JH, Kim SJ. Lipin1-mediated repression of adipogenesis by rutin. Am J Chin Med. 2016; 44(03):565-78. PMid:27109161 https://doi.org/10.1142/S0192415X16500312

Pavithra L, Ilango K. Identification of phytoconstituents for combating Polycystic ovarian syndrome through in silico techniques. Indian J Biochem Biophys. 2023; 60(2):99-107.