Metal-Infused Polyphenol-enriched Phyto-fabricated Nanoparticles: an In-depth Review of their Potent Prebiotic Properties

Jump To References Section

Authors

  • Department of Chemistry, Presidency University, Bangalore - 560064, Karnataka ,IN
  • Manager R and D, Prakruti Products Private Limited, Bangalore - 560079, Karnataka ,IN
  • Department of Chemistry, School of Engineering, Presidency University, Bangalore - 560064, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35062

Keywords:

Bioavailability, Herbal Extract, Polyphenol, Prebiotics, Probiotics, Nanoparticles

Abstract

In light of its potential health benefits, including as improved gut health and management of the gut microbiota, herbal extracts have witnessed a major increase in demand as prebiotics in recent years. Many studies have demonstrated that polyphenolrich herbal extracts can work as prebiotics by encouraging the growth of beneficial gut flora. Unfortunately, the limited solubility and stability of these herbal extracts, as well as their susceptibility to breakdown in the gastrointestinal system, can limited their bioavailability and efficiency. To address these limitations, the integration of metal nanoparticles has emerged as a promising strategy for the efficient delivery of herbal extracts, affording heightened bioavailability and precise targeting of the gut microbiota. In this paper, we present current breakthrough in metal infused nanoparticle-based assessment of herbal extracts as efficient prebiotics, with an emphasis on formulation, characterization, and biological activity. The integration of metal nanoparticles into polyphenol-rich herbal extracts represents a cutting-edge approach to enhancing the prebiotic properties of these compounds. Metal-infused polyphenol-enriched phyto-fabricated nanoparticles hold great promise for improving gut health and modulating the gut microbiota, offering innovative solutions to address the limitations associated with traditional polyphenol delivery. Furthermore, extracts of polyphenol-rich medicinal herbs such as rosehip flower, hibiscus flower, mango bark, bamboo stem, green tea, pomegranate, and dhataki flower have been investigated to assess the viability of employing these phyto generated metal infused nanoparticles as a potential prebiotic

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

Reddy, G. T., Aluri, S. L., & A. R. Shashikala. (2023). Metal-Infused Polyphenol-enriched Phyto-fabricated Nanoparticles: an In-depth Review of their Potent Prebiotic Properties. Journal of Mines, Metals and Fuels, 71(10), 1764–1774. https://doi.org/10.18311/jmmf/2023/35062

 

References

Guarner F, Malagelada JR. Gut flora in health and disease. The lancet. 2003 Feb 8; 361(9356):512-9. https://doi.org/10.1016/S0140-6736(03)12489-0 PMid:12583961 DOI: https://doi.org/10.1016/S0140-6736(03)12489-0

Collins S, Reid G. Distant site effects of ingested prebiotics. Nutrients. 2016 Aug 26; 8(9):523.https://doi.org/10.3390/ nu8090523 PMid:27571098 PMCid:PMC5037510 DOI: https://doi.org/10.3390/nu8090523

Louis, P., Flint, H. J., Michel, C. How to manipulate the Micro biota: prebiotics. Microbiota of the Human Body: Implications in Health and Disease. 2016; pp. 119-42. https://doi.org/10.1007/978-3-319-31248-4_9 PMid:27161355 DOI: https://doi.org/10.1007/978-3-319-31248-4_9

Anhê FF, Varin TV, Le Barz M, Desjardins Y, Levy E, Roy D, Marette A. Gut microbiota dysbiosis in obesitylinked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep. 2015 Dec; 4:389-400. https://doi.org/10.1007/s13679-015-0172-9 PMid:26343880 DOI: https://doi.org/10.1007/s13679-015-0172-9

Zhao Q, Luan X, Zheng M, Tian XH, Zhao J, Zhang WD, Ma BL. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics. 2020 Feb 3; 12(2):128. https://doi. org/10.3390/pharmaceutics12020128 PMid:32028739 PMCid:PMC7076514 DOI: https://doi.org/10.3390/pharmaceutics12020128

Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed. 2014 May 1; 4:S1-7. https://doi. org/10.12980/APJTB.4.2014C980 PMid:25183064 PMCid:PMC4025268 DOI: https://doi.org/10.12980/APJTB.4.2014C980

Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019 Dec; 23(1):1- 29. https://doi.org/10.1186/s40824-019-0166-x PMid:31832232 PMCid:PMC6869321 DOI: https://doi.org/10.1186/s40824-019-0166-x

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006 Feb 24; 124(4):837-48.https:// doi.org/10.1016/j.cell.2006.02.017 PMid:16497592 DOI: https://doi.org/10.1016/j.cell.2006.02.017

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4; 464(7285):59-65. https://doi.org/10.1038/nature08821 PMid:20203603 PMCid:PMC3779803 DOI: https://doi.org/10.1038/nature08821

Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013 Jul; 6(4):295-308. https:// doi.org/10.1177/1756283X13482996 PMid:23814609 PMCid:PMC3667473 DOI: https://doi.org/10.1177/1756283X13482996

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Reports. 2006 Jul; 7(7):688-93. https:// doi.org/10.1038/sj.embor.7400731 PMid:16819463 PMCid:PMC1500832 DOI: https://doi.org/10.1038/sj.embor.7400731

Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, Fernández L, Rodríguez JM. Is meconium from healthy new borns actually sterile? Res Microbiol. 2008 Apr 1; 159(3):187-93. https://doi.org/10.1016/j. resmic.2007.12.007 PMid:18281199 DOI: https://doi.org/10.1016/j.resmic.2007.12.007

Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of highthroughput sequencing to address these gaps. Gut Microbes. 2012 May 1; 3(3):203-20. https:// doi.org/10.4161/gmic.20169 PMid:22572829 PMCid:PMC3427213 DOI: https://doi.org/10.4161/gmic.20169

Ahlawat S, Asha, Sharma KK. Gut-organ axis: a microbial outreach and networking. Letters in applied microbiology. Blackwell Publishing Ltd. 2021 Jun 1; 72(6):636-68. https://doi.org/10.1111/lam.13333 PMid:32472555 DOI: https://doi.org/10.1111/lam.13333

Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019 Mar 9; 8(3):92. https://doi.org/10.3390/foods8030092 PMid:30857316 PMCid:PMC6463098 DOI: https://doi.org/10.3390/foods8030092

Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995 Jun 1; 125(6):1401-12. https:// doi.org/10.1093/jn/125.6.1401 PMid:7782892 DOI: https://doi.org/10.1093/jn/125.6.1401

Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011 Jan 1; 93(1):62-72. https://doi.org/10.3945/ajcn.110.000075 PMid:21068351 DOI: https://doi.org/10.3945/ajcn.110.000075

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010 Dec 10; 2(12):1231-46. https://doi.org/10.3390/nu2121231 PMid:22254006 PMCid:PMC3257627 DOI: https://doi.org/10.3390/nu2121231

Alves-Santos AM, Sugizaki CS, Lima GC, Naves MM. Prebiotic effect of dietary polyphenols: A systematic review. J Funct Foods. 2020 Nov 1; 74: 104169. https:// doi.org/10.1016/j.jff.2020.104169 DOI: https://doi.org/10.1016/j.jff.2020.104169

Moorthy M, Sundralingam U, Palanisamy UD. Polyphenols as prebiotics in the management of high-fat diet-induced obesity: A systematic review of animal studies. Foods. 2021 Feb 2; 10(2):299. https:// doi.org/10.3390/foods10020299 PMid:33540692 PMCid:PMC7913110 DOI: https://doi.org/10.3390/foods10020299

Li J, Wu T, Li N, Wang X, Chen G, Lyu X. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct. 2019; 10(1):333-43. https://doi.org/10.1039/C8FO01962B PMid:30575836 DOI: https://doi.org/10.1039/C8FO01962B

Henning SM, Yang J, Hsu M, Lee RP, Grojean EM, Ly A, Tseng CH, Heber D, Li Z. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur. J. Nutr. 2018 Dec; 57(8):2759-69. https:// doi.org/10.1007/s00394-017-1542-8 PMid:28965248 PMCid:PMC7367598 DOI: https://doi.org/10.1007/s00394-017-1542-8

Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De Los Reyes-gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016 Feb 17; 7:185. https://doi.org/10.3389/fmicb.2016.00185 PMid:26925050 PMCid:PMC4756104 DOI: https://doi.org/10.3389/fmicb.2016.00185

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016 Jun 2; 165(6):1332-45. https://doi.org/10.1016/j. cell.2016.05.041 PMid:27259147 DOI: https://doi.org/10.1016/j.cell.2016.05.041

Xu J, Jönsson T, Plaza M, Håkansson Å, Antonsson M, Ahrén IL, Turner C, Spégel P, Granfeldt Y. Probiotic fruit beverages with different polyphenol profiles attenuated early insulin response. J Nutr. 2018 Dec; 17:1-0. https:// doi.org/10.1186/s12937-018-0335-0 PMid:29486772 PMCid:PMC5827978 DOI: https://doi.org/10.1186/s12937-018-0335-0

Diez-Echave P, Vezza T, Rodriguez-Nogales A, RuizMalagón AJ, Hidalgo-Garcia L, Garrido-Mesa J, Molina-Tijeras JA, Romero M, Robles-Vera I, PimentelMoral S, Borras-Linares I. The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Res Int. 2020 Jan 1; 127:108722. https://doi.org/10.1016/j. foodres.2019.108722 PMid:31882094 DOI: https://doi.org/10.1016/j.foodres.2019.108722

Sanadheera S, Subasinghe D, Solangaarachchi MN, Suraweera M, Suraweera NY, Tharangika N. Hibiscus rosa-sinensis L. (red Hibiscus) Tea, Can It Be Used as A Home-Remedy to Control Diabetes and Hypercholesterolemia?. Biol. Med. Natural Prod. Chem. 2021 Jul 27; 10(1):59-65. https://doi.org/10.14421/ biomedich.2021.101.59-65 DOI: https://doi.org/10.14421/biomedich.2021.101.59-65

Kim H, Castellon-Chicas MJ, Arbizu S, Talcott ST, Drury NL, Smith S, Mertens-Talcott SU. Mango (Mangifera indica L.) polyphenols: Anti-inflammatory intestinal microbial health benefits, and associated mechanisms of actions. Molecules. 2021 May 6; 26(9):2732. https:// doi.org/10.3390/molecules26092732 PMid:34066494 PMCid:PMC8124428 DOI: https://doi.org/10.3390/molecules26092732

An Y, Lu W, Li W, Pan L, Lu M, Cesarino I, Li Z, Zeng W. Dietary fiber in plant cell walls-the healthy carbohydrates. Food Qual. Saf. 2022 Jan 1; 6:fyab037. https://doi.org/10.1093/fqsafe/fyab037 DOI: https://doi.org/10.1093/fqsafe/fyab037

Azmi AF, Mustafa S, Hashim DM, Manap YA. Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots. Molecules. 2012 Feb 7; 17(2):1635-51. https://doi. org/10.3390/molecules17021635 PMid:22314383 PMCid:PMC6268289 DOI: https://doi.org/10.3390/molecules17021635

Pérez-Burillo S, Navajas-Porras B, López-Maldonado A, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Green tea and its relation to human gut microbiome. Molecules. 2021 Jun 26; 26(13):3907. https://doi. org/10.3390/molecules26133907 PMid:34206736 PMCid:PMC8271705 DOI: https://doi.org/10.3390/molecules26133907

Li Z, Summanen PH, Komoriya T, Henning SM, Lee RP, Carlson E, Heber D, Finegold SM. Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: Implications for prebiotic and metabolic effects. Anaerobe. 2015 Aug 1; 34:164-8. https://doi. org/10.1016/j.anaerobe.2015.05.012 PMid:26051169 DOI: https://doi.org/10.1016/j.anaerobe.2015.05.012

Howell AB, D’Souza DH. The pomegranate: effects on bacteria and viruses that influence human health. Evidence-Based Complementary and Alternative Medicine. 2013 Oct; 2013:606212. https:// doi.org/10.1155/2013/606212 PMid:23762148 PMCid:PMC3671682 DOI: https://doi.org/10.1155/2013/606212

Das PK, Goswami S, Chinniah A, Panda N, Banerjee S, Sahu NP, Achari B. Woodfordia fruticosa: Traditional uses and recent findings. J Ethnopharmacology. 2007 Mar 21; 110(2):189-99. https://doi.org/10.1016/j. jep.2006.12.029 PMid:17276634 DOI: https://doi.org/10.1016/j.jep.2006.12.029

Sekar S, Vinothkanna A. Polyherbal and submerge fermented medicines of Ayurveda: Convergence of tradition with scientific trends and needs. S Afr J Bot. 2019 Mar 1; 121:410-7. https://doi.org/10.1016/j. sajb.2018.12.009 DOI: https://doi.org/10.1016/j.sajb.2018.12.009

Tayab MA, Chowdhury KA, Jabed M, Mohammed Tareq S, Kamal AM, Islam MN, Uddin AK, Hossain MA, Emran TB, Simal-Gandara J. Antioxidant-rich Woodfordia fruticosa leaf extract alleviates depressivelike behaviors and impede hyperglycemia. Plants. 2021 Feb 3; 10(2):287. https://doi.org/10.3390/plants10020287 PMid:33546288 PMCid:PMC7913287 DOI: https://doi.org/10.3390/plants10020287

Thakur S, Kaurav H, Chaudhary G. A Review on Woodfordia fruticosa Kurz (Dhatki): Ayurvedic, Folk and Modern Uses. J. Drug Deliv Ther. 2021 May 15; 11(3):126-31. https://doi.org/10.22270/jddt.v11i3.4839 DOI: https://doi.org/10.22270/jddt.v11i3.4839

Giri S, Dey G, Sahu R, Paul P, Nandi G, Dua TK. Traditional Uses, Phytochemistry and Pharmacological Activities of Woodfordia fruticosa (L) Kurz: A Comprehensive Review. Indian J. Pharm. Sci. 2023 Mar 1; 85(1):1-12. https://doi.org/10.36468/pharmaceutical-sciences.1062 DOI: https://doi.org/10.36468/pharmaceutical-sciences.1062

Rodríguez-Daza MC, Pulido-Mateos EC, LupienMeilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. Front Nutr. 2021 Jun 28; 8:689456. https://doi.org/10.3389/fnut.2021.689456 PMid:34268328 PMCid:PMC8276758 DOI: https://doi.org/10.3389/fnut.2021.689456

Sallam IE, Abdelwareth A, Attia H, Aziz RK, Homsi MN, von Bergen M, Farag MA. Effect of gut microbiota biotransformation on dietary tannins and human health implications. Microorganisms. 2021; 9:965. https://doi. org/10.3390/microorganisms9050965 PMid:33947064 PMCid:PMC8145700 DOI: https://doi.org/10.3390/microorganisms9050965

Ong ES. Extraction methods and chemical standardization of botanicals and herbal preparations. J Chromatogr B. 2004 Dec 5; 812(1-2):23-33. https://doi.org/10.1016/ S1570-0232(04)00647-6 DOI: https://doi.org/10.1016/S1570-0232(04)00647-6

Ionescu MI. Are herbal products an alternative to antibiotics? In Bacterial Pathogenesis and Antibacterial Control 2017 Dec 20. IntechOpen. https://doi. org/10.5772/intechopen.72110 DOI: https://doi.org/10.5772/intechopen.72110

An X, Bao Q, Di S, Zhao Y, Zhao S, Zhang H, Lian F, Tong X. The interaction between the gut microbiota and herbal medicines. Biomed & Pharmacother. 2019 Oct 1; 118:109252. https://doi.org/10.1016/j. biopha.2019.109252 PMid:31545247 DOI: https://doi.org/10.1016/j.biopha.2019.109252

Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019 Dec; 7(1):1-5. https://doi.org/10.1186/s40168-019- 0704-8 PMid:31196177 PMCid:PMC6567490 45. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharm. 2014 Jan 10; 4:177. https:// doi.org/10.3389/fphar.2013.00177 PMid:24454289 PMCid:PMC3887317

Thakkar S, Anklam E, Xu A, Ulberth F, Li J, Li B, Hugas M, Sarma N, Crerar S, Swift S, Hakamatsuka T. Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regul. Toxicol. Pharmacol. 2020 Jul 1; 114:104647. https://doi.org/10.1016/j. yrtph.2020.104647 PMid:32305367 DOI: https://doi.org/10.1016/j.yrtph.2020.104647

Hussain S. Patient counseling about herbal-drug interactions. Afr J Tradit Complement Altern Med. 2011; 8(5S):152-163. https://doi.org/10.4314/ajtcam. v8i5S.8 PMid:22754069 PMCid:PMC3252717 DOI: https://doi.org/10.4314/ajtcam.v8i5S.8

Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 2013 Apr 1; 3(4):253-66. https://doi.org/10.1016/S2221- 1691(13)60060-X PMid:23620848

Bonifacio BV, da Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014 Dec; 9:1-5. https://doi.org/10.2147/ IJN.S52634 PMid:24363556 PMCid:PMC3862741

Bateman J, Chapman RD, Simpson D. Possible toxicity of herbal remedies. Scott. Med. J. 1998 Feb; 43(1):7- 15. https://doi.org/10.1177/003693309804300104 PMid:9533252 DOI: https://doi.org/10.1177/003693309804300104

Beutler JA. Natural products as a foundation for drug discovery. Curr Protoc Pharmacol. 2019 Sep; 86(1):e67. https://doi.org/10.1002/cpph.67 PMid:31539923 PMCid:PMC7442317 DOI: https://doi.org/10.1002/cpph.67

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 Mar; 20(3):200-16. https://doi.org/10.1038/s41573-020- 00114-z PMid:33510482 PMCid:PMC7841765 DOI: https://doi.org/10.1038/s41573-020-00114-z

Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved Activity of Herbal Medicines through Nanotechnology. Nanomaterials. 2022 Nov 18; 12(22):4073. https://doi.org/10.3390/nano12224073 PMid:36432358 PMCid:PMC9695685 DOI: https://doi.org/10.3390/nano12224073

Patra JK, Das G, Fraceto LF, Campos EV, RodriguezTorres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Dec; 16(1):1-33. https://doi.org/10.1186/s12951-018-0392-8 PMid:30231877 PMCid:PMC6145203 DOI: https://doi.org/10.1186/s12951-018-0392-8

Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol. 2020 Apr 7; 8:238. https://doi.org/10.3389/ fbioe.2020.00238 PMid:32318551 PMCid:PMC7154137 DOI: https://doi.org/10.3389/fbioe.2020.00238

Abdul Rahim R, Jayusman PA, Muhammad N, Ahmad F, Mokhtar N, Naina Mohamed I, Mohamed N, Shuid AN. Recent advances in nanoencapsulation systems using PLGA of bioactive phenolics for protection against chronic diseases. Int. J. Environ. Res. Public Health. 2019 Dec; 16(24):4962. https://doi.org/10.3390/ ijerph16244962 PMid:31817699 PMCid:PMC6950714 DOI: https://doi.org/10.3390/ijerph16244962

Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M. Therapeutic potential of quercetin: New insights and perspectives for human health. Acs Omega. 2020 May 14; 5(20):11849-72. https:// doi.org/10.1021/acsomega.0c01818 PMid:32478277 PMCid:PMC7254783 DOI: https://doi.org/10.1021/acsomega.0c01818

Das P, Ghosh S, Nayak B. Phyto-fabricated nanoparticles and their anti-biofilm activity: Progress and current status. Front Nanotechnol. 2021 Oct 25; 3:739286. https://doi.org/10.3389/fnano.2021.739286 DOI: https://doi.org/10.3389/fnano.2021.739286

Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, Capasso R, Santini A. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Mol. Sci. 2020 Mar 26; 21(7):2285. https://doi.org/10.3390/ ijms21072285 PMid:32225036 PMCid:PMC7177810 DOI: https://doi.org/10.3390/ijms21072285

Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj, VS, Priyadarshini A. Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics. 2023. 12(1):121. https://doi.org/10.3390/antibiotics12010121 PMid:36671322 PMCid:PMC9855199 DOI: https://doi.org/10.3390/antibiotics12010121

Baharlouei P, Rahman A. Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mari Drugs. 2022 Jul 17; 20(7):460. https://doi.org/10.3390/md20070460 PMid:35877753 PMCid:PMC9319611 DOI: https://doi.org/10.3390/md20070460

Ashaolu TJ. Emerging applications of nanotechnologies to probiotics and prebiotics. Int J Food Sci Techn. 2021 Aug; 56(8):3719-25. https://doi.org/10.1111/ijfs.15020 DOI: https://doi.org/10.1111/ijfs.15020

Farmoudeh A, Shokoohi A, Ebrahimnejad P. Preparation and evaluation of the antibacterial effect of chitosan nanoparticles containing ginger extract tailored by central composite design. Adv. Pharm. Bull. 2021 Sep; 11(4):643. https://doi.org/10.34172/apb.2021.073 PMid:34888211 PMCid:PMC8642796 DOI: https://doi.org/10.34172/apb.2021.073

Goktas Z, Zu Y, Abbasi M, Galyean S, Wu D, Fan Z, Wang S. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. J. Agric. Food Chem. 2020 Jul 7; 68(31):8119-31. https:// doi.org/10.1021/acs.jafc.0c00131 PMid:32633507 PMCid:PMC8507418 DOI: https://doi.org/10.1021/acs.jafc.0c00131

Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants. 2020 Sep 26; 9(10):923. https://doi.org/10.3390/antiox9100923 PMid:32993196 PMCid:PMC7601682 DOI: https://doi.org/10.3390/antiox9100923

Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine. 2022 Feb 1; 96:153890. https://doi.org/10.1016/j. phymed.2021.153890 PMid:35026510 DOI: https://doi.org/10.1016/j.phymed.2021.153890

Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences. 2011 Jul 5; 108(27):10980-5. https://doi.org/10.1073/ pnas.1106634108 PMid:21690347 PMCid:PMC3131364 DOI: https://doi.org/10.1073/pnas.1106634108

Lu L, Chen G, Qiu Y, Li M, Liu D, Hu D, Gu X, Xiao Z. Nanoparticle-based oral delivery systems for colon targeting: principles and design strategies. Sci Bull. 2016 May 1; 61(9):670-81. https://doi.org/10.1007/s11434- 016-1056-4 DOI: https://doi.org/10.1007/s11434-016-1056-4

Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021 Nov 1; 120:106882. https://doi. org/10.1016/j.foodhyd.2021.106882 DOI: https://doi.org/10.1016/j.foodhyd.2021.106882

Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces. 2011 May 1; 84(1):163-71. https://doi.org/10.1016/j. colsurfb.2010.12.031 PMid:21296562 DOI: https://doi.org/10.1016/j.colsurfb.2010.12.031

Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015 Apr; 5:123-7. https://doi.org/10.1007/s13205-014- 0214-0 PMid:28324579 PMCid:PMC4362737 DOI: https://doi.org/10.1007/s13205-014-0214-0

Pereira P, Carvalho V, Ramos R, Gama M. Chitosan nanoparticles for biomedical applications. Chitosan: manufacture, properties, and usage. Nova Science Publishers, Inc. New York, USA. 2011:321-64.

Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 2013 Jan 1; 65(1):36-48. https://doi.org/10.1016/j. addr.2012.09.037 PMid:23036225 DOI: https://doi.org/10.1016/j.addr.2012.09.037

Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012; 41(7):2740-79. https://doi.org/10.1039/C1CS15237H PMid:22109657 PMCid:PMC5876014 DOI: https://doi.org/10.1039/C1CS15237H

Pathak Y, Thassu D, editors. Drug delivery nanoparticles formulation and characterization. CRC Press; 2016 Apr 19. https://doi.org/10.3109/9781420078053 DOI: https://doi.org/10.3109/9781420078053

Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001 Jun 1; 53(2):283-318.

Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014 Nov; 13(11):813-27. https://doi.org/10.1038/nrd4333 PMid:25287120 PMCid:PMC4489143 DOI: https://doi.org/10.1038/nrd4333

Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine. 2011 Aug 10:1621- 30. https://doi.org/10.2147/IJN.S22411 PMid:21904452 PMCid:PMC3160948 DOI: https://doi.org/10.2147/IJN.S22411

Chopra M, Jain R, Dewangan AK, Varkey S, Mazumder S. Design of curcumin loaded polymeric nanoparticlesoptimization, formulation and characterization. J. Nanosci. Nanotechnol. 2016 Sep 1; 16(9):9432-42. https://doi.org/10.1166/jnn.2016.12363 DOI: https://doi.org/10.1166/jnn.2016.12363

Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett. 2016 Apr 28; 374(1):31-43. https://doi.org/10.1016/j. canlet.2016.01.050 PMid:26854717 DOI: https://doi.org/10.1016/j.canlet.2016.01.050

Muhamad II, Jusoh YM, Nawi NM, Aziz AA, Padzil AM, Lian HL. Advanced natural food colorant encapsulation methods: Anthocyanin plant pigment. In Natural and Artificial Flavoring Agents and Food Dyes. Academic Press. 2018 Jan 1; pp. 495-526. DOI: https://doi.org/10.1016/B978-0-12-811518-3.00015-6

Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chem Rev. 2020 Jun 25; 121(2):834-81. https:// doi.org/10.1021/acs.chemrev.0c00237 PMid:32585087 DOI: https://doi.org/10.1021/acs.chemrev.0c00237

Dubey SK, Parab S, Achalla VP, Narwaria A, Sharma S, Jaswanth Gowda BH, Kesharwani P. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts. J Biomater Sci, Polym Ed. 2022 Aug 13; 33(12):1531-54. https://doi.org/10.1080/09 205063.2022.2065408 PMid:35404217 DOI: https://doi.org/10.1080/09205063.2022.2065408