Potential of Monoclonal Antibody (mAb) as Alternative Treatment of Alzheimer: A Sytematic Scoping Review

Nuraulia Aghnia Armansyah, Azalia Melati Putri, Wafiq Nurul Azizah, Ida Maryati

Abstract


Alzheimer's disease (AD) is a global problem that is expected to increase along with the increasing rate of population aging. Monoclonal antibodies (mAb) are considered capable of overcoming the accumulation of amyloid-β plaques; pathological signs of AD. This study aims to explore the potential of mAbs as alternative pharmacological therapies for the elderly with AD. This study uses a scoping review design based on the PAGER framework. The results of the study were identified based on the PRISMA-ScR protocol and criticized using the JBI Critical Appraisal Checklist. Article searches were conducted through 3 databases including EBSCO-Host Academic Science Complete, PubMed, and ScienceDirect, and 3 online resources including Sage Journals, Taylor Francis, and Google Scholar. Inclusion criteria were full English text, primary research articles, and published between 2018-2022.A total of 8 articles were included in the review. Most of the evidence shows 6 mAbs have potential to reduce amyloid-β accumulation in AD patients. Alternative therapy with monoclonal antibodies has side effects that represent a major problem in the high incidence of vasogenic cerebral edema and micro cerebral hemorrhage or Amyloid Related Imaging Abnormalities (ARIA). Plasma tau has the potential to strengthen the clinical diagnosis of AD. The use of mAbs as AD immunotherapy can reduce amyloid-β with side effects that are monitored continuously. Differences in mAb examination results can be influenced by less accurate clinical diagnostic accuracy.


Keywords


Alzheimer disease; Elderly; Immunotherapy; Monoclonal antibody

Full Text:

PDF

References


Avgerinos, K. I., Ferrucci, L., & Kapogiannis, D. (2021). Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Research Reviews, 68, 101339. 1-25.

Ayatulloh, D., Nursalam, N., & Kurniawati, N. D. (2021). The Effect of Knowledge Management in Healthcare Services: A Systematic Review. Jurnal Pendidikan Keperawatan Indonesia, 7(1), 84–96.

Bradbury-Jones, C., Isham, L., Morris, A. J., & Taylor, J. (2021). The “neglected” relationship between child maltreatment and oral health? an international scoping review of research. Trauma, Violence, & Abuse, 22(2), 265–276.

Brännström, K., Lindhagen-Persson, M., Gharibyan, A. L., Iakovleva, I., Vestling, M., Sellin, M. E., Brännström, T., Morozova-Roche, L., Forsgren, L., & Olofsson, A. (2014). A generic method for design of oligomer-specific antibodies. PloS One, 9(3), e90857. 1-13.

Budd Haeberlein, S., Aisen, P. S., Barkhof, F., Chalkias, S., Chen, T., Cohen, S., Dent, G., Hansson, O., Harrison, K., von Hehn, C., Iwatsubo, T., Mallinckrodt, C., Mummery, C. J., Muralidharan, K. K., Nestorov, I., Nisenbaum, L., Rajagovindan, R., Skordos, L., Tian, Y., … Sandrock, A. (2022). Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. Journal of Prevention of Alzheimer’s Disease, 9(2), 197–210.

Chiang, K., & Koo, E. H. (2014). Emerging Therapeutics for Alzheimer’s Disease. Annual Review of Pharmacology and Toxicology, 54(1), 381–405.

Chin, E., Jaqua, E., Safaeipour, M., & Ladue, T. (2022). Conventional Versus New Treatment: Comparing the Effects of Acetylcholinesterase Inhibitors and N-Methyl-D-Aspartate Receptor Antagonist With Aducanumab. Cureus, 14(11), e31065. 1-7.

Congdon, E. E., Chukwu, J. E., Shamir, D. B., Deng, J., Ujla, D., Sait, H. B. R., Neubert, T. A., Kong, X.-P., & Sigurdsson, E. M. (2019). Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine, 42, 157–173.

Divo, M. J., Martinez, C. H., & Mannino, D. M. (2014). Ageing and the epidemiology of multimorbidity. The European Respiratory Journal, 44(4), 1055–1068.

Dyck, C. H. van, Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., D. Li, L. R., S. Cohen, L. F., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2021). Lecanemab in early Alzheimer’s Disease. Journal Fur Neurologie, Neurochirurgie Und Psychiatrie, 22(3), 142–143.

Farlow, M., Arnold, S., Dyck, C., Aisen, P., Snider, B., Porsteinsson, A., Friedrich, S., Dean, R., Gonzales, C., Sethuraman, G., DeMattos, R., Mohs, R., Paul, S., & Siemers, E. (2012). Safety and biomarker effects of Solanezumab in patients with Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 8, 261–271.

Folch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., Olloquequi, J., & Camins, A. (2018). Review of the advances in treatment for Alzheimer disease: strategies for combating β-amyloid protein. Neurología (English Edition), 33(1), 47–58.

Gibson, C., Goeman, D., Hutchinson, A., Yates, M., & Pond, D. (2021). The provision of dementia care in general practice: practice nurse perceptions of their role. BMC Family Practice, 22(1), 1–13.

Huang, L.-K., Chao, S.-P., & Hu, C.-J. (2020). Clinical trials of new drugs for Alzheimer disease. Journal of Biomedical Science, 27(1), 1–13.

Klein, G., Delmar, P., Voyle, N., Rehal, S., Hofmann, C., Abi-Saab, D., Andjelkovic, M., Ristic, S., Wang, G., Bateman, R., Kerchner, G. A., Baudler, M., Fontoura, P., & Doody, R. (2019). Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: a PET substudy interim analysis. Alzheimer’s Research & Therapy, 11(1), 1–12.

Lowe, S. L., Duggan Evans, C., Shcherbinin, S., Cheng, Y.-J., Willis, B. A., Gueorguieva, I., Lo, A. C., Fleisher, A. S., Dage, J. L., Ardayfio, P., Aguiar, G., Ishibai, M., Takaichi, G., Chua, L., Mullins, G., & Sims, J. R. (2021a). Donanemab (LY3002813) Phase 1b Study in Alzheimer’s Disease: Rapid and Sustained Reduction of Brain Amyloid Measured by Florbetapir F18 Imaging. The Journal of Prevention of Alzheimer’s Disease, 8(4), 414–424.

Masciadri, A., Comai, S., & Salice, F. (2019). Wellness Assessment of Alzheimer’s Patients in an Instrumented Health-Care Facility. Sensors (Basel, Switzerland), 19(17), 3658. 1-21.

Panza, F., Lozupone, M., Seripa, D., & Imbimbo, B. P. (2019). Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Annals of Neurology, 85(3), 303–315.

Penninkilampi, R., Brothers, H. M., & Eslick, G. D. (2017). Safety and efficacy of anti-amyloid-β immunotherapy in Alzheimer’s disease: A systematic review and meta-analysis. Journal of Neuroimmune Pharmacology, 12(1), 194–203.

Plotkin, S. S., & Cashman, N. R. (2020). Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiology of Disease, 144, 105010. 1-26.

Prins, N. D., & Scheltens, P. (2013). Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimer’s Research & Therapy, 5(6), 1-6.

Rahman, A., Hossen, M. A., Chowdhury, M. F. I., Bari, S., Tamanna, N., Sultana, S. S., Haque, S. N., Al Masud, A., & Saif-Ur-Rahman, K. M. (2023). Aducanumab for the treatment of Alzheimer’s disease: a systematic review. Psychogeriatrics, 512–522.

Salloway, S., Honigberg, L. A., Cho, W., Ward, M., Friesenhahn, M., Brunstein, F., ... & Paul, R. (2018). Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimer's research & therapy, 10(1), 1-13.

Salloway, S., Marshall, G. A., Lu, M., & Brashear, H. R. (2018). Long-Term Safety and Efficacy of Bapineuzumab in Patients with Mild-to-Moderate Alzheimer’s Disease: A Phase 2, Open-Label Extension Study. Current Alzheimer Research, 15(13), 1231–1243.

Schwarz, A. J., Sundell, K. L., Charil, A., Case, M. G., Jaeger, R. K., Scott, D., Bracoud, L., Oh, J., Suhy, J., Pontecorvo, M. J., Dickerson, B. C., & Siemers, E. R. (2019). Magnetic resonance imaging measures of brain atrophy from the EXPEDITION3 trial in mild Alzheimer’s disease. Alzheimer’s & Dementia (New York, N. Y.), 5, 328–337.

Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.

Shcherbinin, S., Evans, C. D., Lu, M., Andersen, S. W., Pontecorvo, M. J., Willis, B. A., Gueorguieva, I., Hauck, P. M., Brooks, D. A., Mintun, M. A., & Sims, J. R. (2022). Association of Amyloid Reduction After Donanemab Treatment With Tau Pathology and Clinical Outcomes: The TRAILBLAZER-ALZ Randomized Clinical Trial. JAMA Neurology, 79(10), 1015–1024.

Shi, M., Chu, F., Zhu, F., & Zhu, J. (2022). Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Frontiers in Aging Neuroscience, 14(April), 1–11.

Suriastini, N. W., Turana, Y., Supraptilah, B., Wicaksono, T. Y., & Mulyanto, E. D. (2020). Prevalence and risk factors of dementia and caregiver’s knowledge of the early symptoms of alzheimer’s disease. Aging Medicine and Healthcare, 11(2), 60–66.

Tampi, R. R., Forester, B. P., & Agronin, M. (2021). Aducanumab: evidence from clinical trial data and controversies. In Drugs in context (Vol. 10). 1-9.

van Dyck, C. H. (2018). Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biological Psychiatry, 83(4), 311–319.

Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coates, M. M., Coggeshall, M., Dandona, L., Dicker, D. J., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Foreman, K., Forouzanfar, M. H., Fraser, M. S., … Murray, C. J. L. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459–1544.

Yang, T., Dang, Y., Ostaszewski, B., Mengel, D., Steffen, V., Rabe, C., Bittner, T., Walsh, D. M., & Selkoe, D. J. (2019). Target engagement in an alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Annals of Neurology, 86(2), 215–224.




DOI: https://doi.org/10.17509/jpki.v9i1.52874

Refbacks

  • There are currently no refbacks.




Jurnal Pendidikan Keperawatan Indonesia(JPKI) published by Indonesia University of Education. JPKI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

View My Stats

Office :
Nursing Department. FPOK UPI.
229, Dr. Setiabudhi Street. Bandung 40154
West Java , Indonesia
E-mail : jpki@upi.edu