google-site-verification: googlefb89bc748c116bef.html
Geochemical Indication of Formation Water Influx to The Volcanic Hosted Hot Springs of Slamet Volcano, Indonesia
PDF

Keywords

Slamet Volcano
geochemistry
geothermal
chloride boron ratio
fluid origin
sedimentary influenced fluid

How to Cite

Harijoko, A., Juhri, S., Taguchi, S., Yonezu, K., & Watanabe, K. (2020). Geochemical Indication of Formation Water Influx to The Volcanic Hosted Hot Springs of Slamet Volcano, Indonesia. Indonesian Journal on Geoscience, 7(1), 1–14. https://doi.org/10.17014/ijog.7.1.1-14

Abstract

DOI:10.17014/ijog.7.1.1-14

The Slamet Volcano is an active volcano lying above a sedimentary rock substratum with three complexes of geothermal manifestations: Baturaden, Guci, and Paguyangan. In order to understand the characteristic and origin of the geothermal fluid related to the Slamet volcanic system emphasizing the identification of formation water influx represented by sea water signature in the thermal fluid, the water chemistry has been analyzed including stable isotopes of the hot springs, cold springs, shallow groundwater, rainwater, and river water surrounding the Slamet Volcano. The temperature of manifestations is in the range of 42 - 72°C, while the chloride concentration of the geothermal water is ranging from 17 to 754 mg/L. Specifically, the manifestations in Baturaden are distinctively featured by a huge travertine deposit. The values of Cl/B ratio and non-equilibrium state of the reactive elements indicate the existence of two main geothermal fluid flows discharging as hot springs at Baturaden, Paguyangan, and Guci complexes. Guci hot spring complex shows a similar characteristic as fumarole condensate water from the summit of Slamet Volcano which has been diluted by meteoric water. On the other hand, Baturaden hot spring complex appears to be affected not only by fumarole condensate, but also by the contribution of formation water from marine sedimentary rock. Meanwhile, Paguyangan hot spring is more likely as the outflow of a geothermal reservoir which has also been interacting with marine sedimentary rock. Furthermore, the signature of stable isotope of δ18O and δ2Η shows a significant portion of meteoric water contributing in the dilution of thermal waters.

https://doi.org/10.17014/ijog.7.1.1-14
PDF

References

Ballantyne, J.M. and Moore, J.N., 1988. Arsenic Geochemistry in Geothermal System. Geochimica et Cosmochimica Acta, 52, p.475-483. DOI: 10.1016/0016-7037(88)90102-0

Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133 (3465), p.1702-1703. DOI: 10.1126/science.133.3465.1702

D’Alessandro, W., Giammanco, S., Bellomo, S., and Parello, F., 2007. Geochemistry and Mineralogy of Travertine Deposits of the SW Flank of Mt. Etna (Italy): Relationships with Past Volcanic and Degassing Activity. Journal of Volcanology and Geothermal Research, 165 (1-2), p.64-70. DOI:10.1016/j.jvolgeores.2007.04.011

Djuri, M., Samodra, H., Amin, T.C., and Gafoer, S., 1996. Geological Map of the Purwokerto and Tegal Quadrangle, Java, scale 1:100.000. Bandung: Geological Research and Development Centre.

Ellis, A.J. and Mahon, W.A.J., 1964. Natural Hydrothermal Systems and Experimental Hot Water/Rock Interactions. Geochimica et Cosmoehimica Acta, 28, p.1323-1357. DOI: 10.1016/0016-7037(64)90132-2

Ellis, A.J. and Mahon, W.A.J., 1977. Chemistry and Geothermal System. New York: Academic Press, 392pp.

Giggenbach, W.F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochemica et Cosmochimica Acta, 52, p.2749-2765. DOI: 10.1016/0016-7037(88)90143-3

Giggenbach, W.F., 1991. Chemical Techniques in Geothermal Exploration. In: D’Amore, F. (ed.), Applications of Geochemistry in Geothermal Reservoir Development: UNITAR/UNDP Centre on Small Energy Resources, Rome.

Giggenbach, W.F., 1992. Isotopic Shifts in Geothermal Waters at Convergent Plate Boundaries. Earth and Planetary Science Letters, 113 (4), p.495-510. DOI: 10.1016/0012-821X(92)90127-H.

Hamilton, W., 1979. Tectonics of the Indonesian region. USGS Professional Paper, 1078.

Harijoko, A. and Juhri, S., 2017. Cl/B ratio of geothermal fluid around Slamet Volcano, Jawa Tengah, Indonesia. IOP Conference Series: Earth and Environmental Science, 103. DOI: 10.1088/1755-1315/103/1/012015

Hochstein, M.P. and Sudarman, S., 2015. Indonesian Volcanic Geothermal Systems. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19 - 25 April 2015.

Husein, S., Jyalita, J., and Nursecha, M.A.Q.,2013. Kendali Stratigrafi dan Struktur Gravitasi pada Rembesan Hidrokarbon Sijenggung, Cekungan Serayu Utara. Prosiding Seminar Nasional Kebumian Ke-6 Teknik Geologi, Universitas Gadjah Mada, Yogyakarta, Indonesia, 11 - 12 Desember 2013.

Kastowo, 1975. Geological Map of the Majenang Quadrangle, Java, scale 1:100.000. Bandung: Geological Survey of Indonesia, Ministry of Mines.

Kementerian Energi dan Sumber Daya Mineral, 2017. Potensi Panas Bumi Indonesia, Jilid 1. https://igis.esdm.go.id/igis/img/Buku_Potensi_Jilid_1.pdf [11 Nov 2018].

Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth-Science Review, 66 (1-2), p.89-141. DOI: /10.1016/j.earscirev.2003.09.001

Mukti, M.M., Ito, M., and Armandita, C., 2009. Architectural Elements of a Longitudinal Turbidite System: the Upper Miocene Halang Formation Submarine-Fan System in the Bogor Trough, West Jawa. Proceedings, Indonesian Petroleum Association, 33rd Annual Convention and Exhibition, May 2009.

Nicholson, K., 1993. Geothermal Fluids: Chemistry and Exploration Techniques. Berlin: Springer-Verlag.

Okumura, T., Takashima, C., Shiraishi, F., Akmaluddin, and Kano, A., 2012. Textural Transition in an Aragonite Travertine Formed under Various Flow Conditions at Pancuran Pitu, Central Java, Indonesia. Sedimentary Geology, 265 - 266, p.195-209. DOI: 10.1016/j.sedgeo.2012.04.010

Prasetio, R., Wiegand, B.A., Malik, D., and Sauter, M., 2015. Stable Isotopes Study of Wayang Windu Geothermal Field, Indonesia. Proceedings of World Geothermal Congress 2015, Melbourne, Australia, 19 - 25 April 2015.

Purnomo, B.J. and Pichler, T., 2014. Geothermal Systems on the Island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 285, p.47-59. DOI: 10.1016/j.jvolgeores.2014.08.004

Purnomo, B.J., Pichler, T., and You, C.F., 2016. Boron Isotope Variations in Geothermal Systems on Java, Indonesia. Journal of Volcanology and Geothermal Research, 311, p.1-8. DOI: 10.1016/j.jvolgeores.2015.12.014

Reubi, O., Nicholls, I.A., and Kamenetsky, V.S., 2003. Early Mixing and Mingling In the Evolution of Basaltic Magmas: Evidence from Phenocryst Assemblages, Slamet Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 119 (1-4), p.255-274. DOI: 10.1016/S0377-0273(02)00357-8

Surmayadi, M., 2014. Geokimia Panas Bumi Gunung Slamet Jawa Tengah. Proceedings of Seminar Nasional Fakultas Teknik Geologi, Bandung 24 May 2014, p.163-183.

Sutawidjaja, I.S., Aswin, D., and Sitorus, K., 1985. Geological Map of Slamet Volcano, Central Java, scale 1:100.000. Bandung:

Volcanological Survey of Indonesia.

Vukadinovic, D. and Sutawidjaja, I., 1995. Geology, mineralogy and magma evolution of Slamet Volcano, Java, Indonesia. Journal of Southeast Asian Earth Sciences, 11 (2), p.135-164. DOI: 10.1016/0743-9547(94)00043-E.

White, D.E., 1957. Magmatic, Connate, and Metamorphic Waters. Bulletin of the Geological Society America, 68 (12), p.1659-1682. DOI: 10.1130/0016-7606(1957)68[1659:MCAM-W]2.0.CO;2.

IJOG as the journal holds copyright of the published papers.