Construction of linear differential equations of the fermenter shell of arbitrary shape in the ultrasonic field

Authors

  • Виктория Николаевна Мельник National Technical University of Ukraine "Kyiv Polytechnic Institute", Ukraine https://orcid.org/0000-0002-0004-7218
  • Владимир Владимирович Карачун National Technical University of Ukraine “Kyiv Polytechnic Institute”, Avenue Victories, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6080-4102

DOI:

https://doi.org/10.15587/2312-8372.2014.28093

Keywords:

meridian line, coordinate functions, elastic displacements, parallel, shell, fermenter, features

Abstract

A computational model of an elastic interaction of the external ultrasonic radiation with the fermenter body is constructed.

The linear differential equations of a thin shell under the assumption of arbitrary shape of the ultrasonic beam, which subsequently allow to determine the coordinate functions of the shell along its length, along a parallel and transversely are composed.

A system of linear differential equations of the dynamics of the fermenter shell was constructed. As a special case, equations of classical cylinder were obtained. To find the coordinate functions, approximate integration methods, in particular, the variable separation method, are used. The nature of the appearance of active energy state zones in the culture broth due to the radiation of sound waves by the fermenter body is explained. Conditions for the occurrence of local features in the liquid at the resonance level in the form of two caustic surfaces, concentric with the body - large and small radius were analytically outlined.

Studies are related to the pharmaceutical industry, production of liquid medications.

The results allow the process automation, product quality improvement and productivity increase.

Author Biographies

Виктория Николаевна Мельник, National Technical University of Ukraine "Kyiv Polytechnic Institute"

Doctor of Engineering, Professor, Head of Department

Department of Bioengineering and Engineering

Владимир Владимирович Карачун, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Avenue Victories, 37, Kyiv, Ukraine, 03056

Doctor of engineering sciences, professor Department of biotechnics and engineering

References

  1. Vol’mir, A. S., Gerstein, M. S. (1965). Behavior of elastic cylindrical shells under the action of a plane acoustic wave. Engineering Journal, 5(6), 1127-1130.

    Guz’, A. N., Kubenko, V. D., Babaev, A. E. (1984). Hydroelasticity systems shells. Ukraine, Kyiv: High School, 208.

    Guz’, A. N., Makhort, F. G., Gusha, O. I. (1977). Introduction to acoustoelasticity.Ukraine, Kyiv: Scientific Thought, 151.

    Lyamshev, L. M. (1955). Reflection sound by thin plates and shells in a liquid. USSR, Moscow: USSR Academy of Sciences, 73.

    Flowers Williams, J. E. (1963). Thonghts on the problem of aerodynamic noise sources near solid bonndaries. Paris: Advisory Group for Aeronautical Research and Development. AGARD report; 459, 351-360.

    Habbard, H. H., Houbolt, S. C.; In: Harries, C. M., Grede, Ch. T. (1961). Vibration Induced by Acoustic Waves. Shock and Vibration Haudbook, 321-332.

    Faran, J. J. (1951). Sound Scattering by Solid Cylinders and Spheres. J. Acoust. Soc. Am. Vol. 23, № 4, 405-418. doi:10.1121/1.1906780.

    Kennard, Е. Н. (1956). Approximate energy and eduilibrium equatoin for cylindrical shells. J. Appl. Mech, 23 (4), 127-132.

    Kistler, A. L., Chen, W. S. (1963, May). The fluctuating pressure field in a supersonic turbulent boundary layer. Journal of Fluid Mechanics, Vol. 16, № 1, 41-64. doi:10.1017/s0022112063000574.

    Lilley, G. M. (1963). Wall pressure fluctuations under turbulent boundary layers at subsonic and supersonic speed. Advisory Group for Aeronautical Research and Development, 48.

    Chernykh, K. F. (1962). Linear theory of shells. USSR, Leningrad: Publishing house of Linengrad University. Part 1, 435.

    Chernykh, K. F. (1962). Linear theory of shells. USSR, Leningrad: Publishing house of Linengrad University. Part 2, 518.

    Khmelev, V. N., Leonov, G. V., Barsukov, R. V., Tsyganok, S. N. (2007). Ultrasonic multifunctional and specialized devices for intensification of technological processes in industry, agriculture and households.Bijsk,Russia: AltayState. tech. Univ., 400.

    Khmelev, V. N., Shalunov, A. V., Shalunova, A. V. (2010). Ultrasonic atomization of liquids.Bijsk,Russia: AltayState. tech. Univ., 272.

    Khmelev, V., Barsukov, R., Genne, D., Abramenko, D., Il'chenko, E. (2012). Piezoelectric transducers temperature monitoring system in ultrasonic technological devices. Eastern-European Journal Of Enterprise Technologies, 6(3(60)), 4-7. Available: http://journals.uran.ua/eejet/article/view/5392.

    Ostapenko, Zh. I., Doroshchuk, M. M. (2014). Hazliftnyi barbotazhnyi aparat. VIII Vseukrainska naukovo-praktychna konferentsiia «Biotekhnolohiia XXI st.». K.: NTUU «KPI», 141.

    Statkevych, S. I., Drobiazko, Yu. S. (2014). Aktyvizatsiia zon robochoho obiemu bioreaktora. VIII Vseukrainska naukovo-praktychna konferentsiia «Biotekhnolohiia KhKhI st.». K.: NTUU «KPI», 139.

    Kaplunov, J. D., Kovalev, V. A., Wilde, M. V. (2003, July). Matching of asymptotic models in scattering of a plane acoustic wave by an elastic cylindrical shell. Journal of Sound and Vibration, Vol. 264, № 3, 639–655. doi:10.1016/s0022- 460x(02)01212-9.

    Tyutekin, V. V., Boĭko, A. I. (2006, May). Diffraction of plane sound waves by elastic cylindrical shells with different types of longitudinal fixations. Acoustical Physics, Vol. 52, № 3, 344–350. doi:10.1134/s106377100603016x.

    Anik’ev, I. I., Mikhailova, M. I., Sushchenko, E. A. (2009, November). Deformation of an elastic plate with an edge notch under the action of a plane shock wave: experimental research. International Applied Mechanics, Vol. 45, № 11, 1243–124. doi:10.1007/s10778-010-0265-9.

Published

2014-10-02

How to Cite

Мельник, В. Н., & Карачун, В. В. (2014). Construction of linear differential equations of the fermenter shell of arbitrary shape in the ultrasonic field. Technology Audit and Production Reserves, 5(1(19), 35–39. https://doi.org/10.15587/2312-8372.2014.28093

Issue

Section

Technology audit