Revealing the influence of ultrasonic processing on the kinetic parameters of convective and combined drying of raw apple materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.276748

Keywords:

apple raw materials, sonication, convective drying, combined drying, direct electric heating

Abstract

The object of research is the process of convective and combined drying of apple raw materials treated before dehydration in an ultrasonic bath. The use of pretreatment solves the issue of intensifying the dehydration process and maintaining the quality of the product.

Sonication for 5 min reduces the dehydration process by 13.7 %, and at 10 min processing – by 27.8 % compared to traditional convective drying. With increasing processing time to 20 minutes, the dehydration rate deteriorates.

Sonication of raw materials for 5 minutes under combined heating does not intensify the dehydration process, and within 10 and 20 minutes it reduces the efficiency of moisture removal. When processed for 10 minutes, the time to reach the final moisture content is increased by 17.2 %, and at 20 min – by 23.4 % compared to control samples.

Regardless of the processing time, there is a decrease in the maximum temperature of the samples in the combined drying process. When processed for 5 minutes, the maximum temperature of the samples decreased by 4.3 %, and with 10 and 20-minute processing – by 8.6 % and 12 % compared to the temperature of samples without sonication.

The results are explained by the "sponge effect" caused by ultrasonic vibrations and the phenomenon of cavitation that occurs in the liquid during the action of the ultrasonic field.

The peculiarity of the pre-sonication before drying is the possibility to intensify the convective dehydration process without increasing the heat carrier's temperature. The use of this type of processing in a combined energy supply will solve the problem of preserving the quality of the finished product by reducing the maximum temperature of the raw material.

The research reported here could be a prerequisite for practial design of an energy-efficient electrical system for drying fruit and vegetable raw materials.

Author Biographies

Oleksandr Savoiskyi, Sumy National Agrarian University

Senior Lecturer

Department of Energy and Electrical Engineering Systems

Viktor Sirenko, Sumy National Agrarian University

PhD, Associate Professor

Department of Energy and Electrical Engineering Systems

References

  1. Chandramohan, V. (2020). Convective drying of food materials: An overview with fundamental aspect, recent developments, and summary. Heat Transfer, 49(3), 1281–1313. doi: https://doi.org/10.1002/htj.21662
  2. Defraeye, T., Verboven, P. (2017). Convective drying of fruit: Role and impact of moisture transport properties in modelling. Journal of Food Engineering, 193, 95–107. doi: https://doi.org/10.1016/j.jfoodeng.2016.08.013
  3. Bhatta, S., Stevanovic Janezic, T., Ratti, C. (2020). Freeze-Drying of Plant-Based Foods. Foods, 9 (1), 87. doi: https://doi.org/10.3390/foods9010087
  4. Ma, Y., Yi, J., Jin, X., Li, X., Feng, S., Bi, J. (2022). Freeze-Drying of Fruits and Vegetables in Food Industry: Effects on Phytochemicals and Bioactive Properties Attributes - A Comprehensive Review. Food Reviews International, 1–19. doi: https://doi.org/10.1080/87559129.2022.2122992
  5. Zhou, X., Wang, S. (2018). Recent developments in radio frequency drying of food and agricultural products: A review. Drying Technology, 37 (3), 271–286. doi: https://doi.org/10.1080/07373937.2018.1452255
  6. Huang, D., Yang, P., Tang, X., Luo, L., Sunden, B. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765–777. doi: https://doi.org/10.1016/j.tifs.2021.02.039
  7. Fan, K., Zhang, M., Mujumdar, A. S. (2017). Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrasonics Sonochemistry, 39, 47–57. doi: https://doi.org/10.1016/j.ultsonch.2017.04.001
  8. Savoiskyi, O., Yakovliev, V., Sirenko, V. (2021). Determining the kinetic and energy parameters for a combined technique of drying apple raw materials using direct electric heating. Eastern-European Journal of Enterprise Technologies, 1 (11 (109)), 33–41. doi: https://doi.org/10.15587/1729-4061.2021.224993
  9. Yadav, A. K., Singh, S. V. (2012). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51 (9), 1654–1673. doi: https://doi.org/10.1007/s13197-012-0659-2
  10. Shete, Y., Chavan, S. R., Champawat, P., Jain, S. (2018). Reviews on osmotic dehydration of fruits and vegetables. Journal of Pharmacognosy and Phytochemistry, 7 (2), 1964–1969. Available at: https://www.phytojournal.com/archives/2018/vol7issue2/PartAB/7-2-141-966.pdf
  11. Ciurzyńska, A., Kowalska, H., Czajkowska, K., Lenart, A. (2016). Osmotic dehydration in production of sustainable and healthy food. Trends in Food Science & Technology, 50, 186–192. doi: https://doi.org/10.1016/j.tifs.2016.01.017
  12. Husarova, O. (2018). Influence of different types blanching apples on drying process for crisps production. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1, 147–156. Available at: http://nbuv.gov.ua/UJRN/Pt_2018_1_13
  13. Khan, M. J., Yeasmin, F., Islam, M. N., Ahmmed, R., Das, P. C., Ali, M. H. (2019). Effect of pretreatments on drying behavior of eggplant. Journal of the Bangladesh Agricultural University, 17 (1), 105–109. doi: https://doi.org/10.3329/jbau.v17i1.40671
  14. García-Martínez, E., Igual, M., Martín-Esparza, M. E., Martínez-Navarrete, N. (2012). Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food and Bioprocess Technology, 6 (11), 3247–3255. doi: https://doi.org/10.1007/s11947-012-0988-1
  15. Brar, H. S., Kaur, P., Subramanian, J., Nair, G. R., Singh, A. (2020). Effect of Chemical Pretreatment on Drying Kinetics and Physio-chemical Characteristics of Yellow European Plums. International Journal of Fruit Science, 20, S252–S279. doi: https://doi.org/10.1080/15538362.2020.1717403
  16. Doymaz, İ. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food and Bioproducts Processing, 88 (2-3), 124–132. doi: https://doi.org/10.1016/j.fbp.2009.09.003
  17. Doymaz, İ., Demir, H., Yildirim, A. (2014). Drying of Quince Slices: Effect of Pretreatments on Drying and Rehydration Characteristics. Chemical Engineering Communications, 202 (10), 1271–1279. doi: https://doi.org/10.1080/00986445.2014.921619
  18. Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., Parente, A. (2013). The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT - Food Science and Technology, 53 (2), 569–579. doi: https://doi.org/10.1016/j.lwt.2013.04.006
  19. Sniezhkin, Yu. F., Petrova, Zh. O., Paziuk V. M. (2012). Hidrotermichna obrobka funktsionalnoi syrovyny. Naukovi pratsi ONAKhT, 41, 13–18.
  20. Xiao, H.-W., Pan, Z., Deng, L.-Z., El-Mashad, H. M., Yang, X.-H., Mujumdar, A. S. et al. (2017). Recent developments and trends in thermal blanching – A comprehensive review. Information Processing in Agriculture, 4 (2), 101–127. doi: https://doi.org/10.1016/j.inpa.2017.02.001
  21. Orikasa, T., Ono, N., Watanabe, T., Ando, Y., Shiina, T., Koide, S. (2018). Impact of blanching pretreatment on the drying rate and energy consumption during far-infrared drying of Paprika (Capsicum annuum L.). Food Quality and Safety, 2 (2), 97–103. doi: https://doi.org/10.1093/fqsafe/fyy006
  22. Savoiskyi, A., Yakovlev, V. (2017). Electrophysical method of intensification of the drying process of fruits. Naukovyi visnyk Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu, 1 (7), 219–224. Available at: http://nbuv.gov.ua/UJRN/nvtdau_2017_7_1_31
  23. Kriaa, K., Nassar, A. F. (2022). Comparative study of pretreatment on microwave drying of Gala apples (Malus pumila): Effect of blanching, electric field and freezing. LWT, 165, 113693. doi: https://doi.org/10.1016/j.lwt.2022.113693
  24. Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113 (3), 427–433. doi: https://doi.org/10.1016/j.jfoodeng.2012.06.013
  25. Tüfekçi, S., Özkal, S. G. (2020). Investigation of Effect of Ultrasound Pretreatment on Drying and Rehydration Characteristics and Microstructure of Apple Slices. Yuzuncu Yıl University Journal of Agricultural Sciences, 30, 950–962. doi: https://doi.org/10.29133/yyutbd.698826
  26. Mieszczakowska-Frąc, M., Dyki, B., Konopacka, D. (2015). Effects of Ultrasound on Polyphenol Retention in Apples After the Application of Predrying Treatments in Liquid Medium. Food and Bioprocess Technology, 9 (3), 543–552. doi: https://doi.org/10.1007/s11947-015-1648-z
  27. Savoiskyi, O., Yakovliev, V., Sirenko, V. (2021). Comparative analysis of methods supplies thermal energy in high-water biological objects during drying. ScienceRise, 1, 3–10. doi: https://doi.org/10.21303/2313-8416.2021.001667
  28. Yakovlev, V., Savoiskyi, A. (2018). The use of direct electric heat in a technological process of combined drying. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva im. P. Vasylenka, 195, 91–96. Available at: http://repo.snau.edu.ua/handle/123456789/7343
  29. Savoiskyi, A., Yakovlev, V., Sirenko, V. (2019). Research of the combined drying process of apple raw material of high humidity. Naukovyi visnyk Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu, 1 (9). Available at: http://repo.snau.edu.ua/bitstream/123456789/7971/1/3.pdf
  30. Savoiskyi, A., Yakovlev, V., Sirenko, V. (2019). Research of quantity of unit electrical resistance apple raw in the drying process. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 203, 107–110. Available at: https://repo.btu.kharkov.ua/bitstream/123456789/5714/1/39.pdf
  31. Savoiskyi, O. (2020). Research of electroplasmolysis of apple raw materials in the process of combined drying. Proceedings of the Tavria State Agrotechnological University, 20 (4), 247–257. doi: https://doi.org/10.31388/2078-0877-2020-20-4-247-257
  32. Fijalkowska, A., Nowacka, M., Witrowa-Rajchert, D. (2017). The physical, optical and reconstitution properties of apples subjected to ultrasound before drying. Italian Journal of Food Science, 29 (2). doi: https://doi.org/10.14674/1120-1770/ijfs.v642
  33. Witrowa-Rajchert, D., Wiktor, A., Sledz, M., Nowacka, M. (2014). Selected Emerging Technologies to Enhance the Drying Process: A Review. Drying Technology, 32 (11), 1386–1396. doi: https://doi.org/10.1080/07373937.2014.903412
  34. Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Witrowa-Rajchert, D. (2016). The influence of immersion and contact ultrasound treatment on selected properties of the apple tissue. Applied Acoustics, 103, 136–142. doi: https://doi.org/10.1016/j.apacoust.2015.05.001
  35. Režek Jambrak, A., Mason, T. J., Paniwnyk, L., Lelas, V. (2007). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, Brussels sprouts and cauliflower. Czech Journal of Food Sciences, 25 (2), 90–99. doi: https://doi.org/10.17221/757-cjfs
Revealing the influence of ultrasonic processing on the kinetic parameters of convective and combined drying of raw apple materials

Downloads

Published

2023-04-29

How to Cite

Savoiskyi, O., & Sirenko, V. (2023). Revealing the influence of ultrasonic processing on the kinetic parameters of convective and combined drying of raw apple materials. Eastern-European Journal of Enterprise Technologies, 2(11 (122), 91–98. https://doi.org/10.15587/1729-4061.2023.276748

Issue

Section

Technology and Equipment of Food Production