Development of the method of constructing the expander turbine rotation speed regulator

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.276587

Keywords:

nonlinear plant, adaptive control, relay regulator, plant model, reduced model

Abstract

The study is devoted to the expander turbine rotation speed regulator, considering the possibility of implementing this regulator on microprocessor automation tools. The use of expander-generator units in general improves energy saving indicators, and the ability to maintain the turbine shaft rotation speed within the specified limits, in turn, directly affects the indicators of the quality of the generated electricity. The expander turbine, as a control object, is described by non-linear equations, which determines the possibility of using regulators of different designs, and requires the selection of the most suitable one according to certain criteria. As part of the study, based on the tasks of practical implementation of the regulator on microprocessor devices, the expediency of reducing the transfer function of the model in the process of identifying the control object was confirmed. As a result of research on an experimental setup, it is shown that the use of a three-position relay regulator allows for regulation dynamics at the level of a classic PID regulator. An important result of the research is the stabilization of the turbine rotation speed, which affects the parameters of the electricity generated by the generator. The description of the control object was linearized by constructing a family of transfer functions for the operating points of the control range. For the construction of the turbine rotation speed regulator, the criterion of "minimum fluctuation of the parameter when changing its set value" is proposed. A regulator for a non-linear object with oscillatory features is built, which has a simple implementation and a cycle time of 1 ms. It makes it possible to reduce rotation speed fluctuations to 5 % and minimize the impact of rotation process disturbances

Author Biographies

Heorhii Kulinchenko, Sumy State University

PhD, Associate Professor

Department of Computerized Control Systems

Viacheslav Zhurba, Sumy State University

PhD, Associate Professor

Department of Computerized Control Systems

Andrii Panych, Sumy State University

Assistant

Department of Computerized Control Systems

Petro Leontiev, Sumy State University

PhD, Head of Department

Department of Computerized Control Systems

References

  1. Kulinchenko, H., Panych, A. Leontiev, P., Zhurba, V. (2022). Simulation of the expander of the excess gas pressure utilization plant. ScienceRise, 3, 3–13. doi: https://doi.org/10.21303/2313-8416.2022.002545
  2. Severin, V. P., Godlevskaya, K. B. (2012). Mnogokriterial'nyy parametricheskiy sintez nelineynykh sistem avtomaticheskogo upravleniya parovoy turbinoy AES. Vіsnik NTU «KhPІ», 29, 117–126. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/10050
  3. Jalali, M., Bhattacharya, K. (2013). Frequency regulation and AGC in isolated systems with DFIG-based wind turbines. 2013 IEEE Power & Energy Society General Meeting. doi: https://doi.org/10.1109/PESMG.2013.6672801
  4. Abo-Elyousr, F. K. (2016). Load frequency controller design for two area interconnected power system with DFIG based wind turbine via ant colony algorithm. 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). doi: https://doi.org/10.1109/MEPCON.2016.7836899
  5. Pappachen, A., Fathima, A. P. (2015). Genetic algorithm based PID controller for a two-area deregulated power system along with DFIG unit. Proceedings of the IEEE Sponsored 2nd International Conference on Innovations in Information, Embedded and Communication systems (ICIIECS), Coimbatore, India, 19–20. Available at: https://www.researchgate.net/publication/281927457
  6. Kumar, A., Sathans (2015). Impact study of DFIG based wind power penetration on LFC of a multi area power system. 2015 Annual IEEE India Conference (INDICON). doi: https://doi.org/10.1109/indicon.2015.7443629
  7. Oshnoei, A., Khezri, R., Muyeen, S. M., Blaabjerg, F. (2018). On the Contribution of Wind Farms in Automatic Generation Control: Review and New Control Approach. Applied Sciences, 8 (10), 1848. doi: https://doi.org/10.3390/app8101848
  8. Marushchak, Y., Mazur, D., Kwiatkowski, B., Kopchak, B., Kwater, T., Koryl, M. (2022). Approximation of Fractional Order PIλDµ-Controller Transfer Function Using Chain Fractions. Energies, 15 (3), 4902. doi: https://doi.org/10.3390/en15134902
  9. Zimchuk, I. V. (2018). Synthesis the digital regulators of lowered order for the reserved systems management by continuous objects. Radio Electronics, Computer Science, Control, 4, 187–192. doi: https://doi.org/10.15588/1607-3274-2017-4-21
  10. Bjork, J., Pombo, D., Johansson, K. H. (2022). Variable-Speed Wind Turbine Control Designed for Coordinated Fast Frequency Reserves. IEEE Transactions on Power Systems, 1471–1481. doi: https://doi.org/10.1109/TPWRS.2021.3104905
  11. Singh, K. K., Agnihotri, G. (2001). System Design through Matlab®, Control Toolbox and Simulink®. Springer London, 488. doi: https://doi.org/10.1007/978-1-4471-0697-5
  12. Amaguaña, J. F., Sánchez, M. J., Pruna, E. P., Escobar, I. P. (2023). Implementation of PID and MPC Controllers for a Quadruple Tank Process in a 3D Virtual System, Using the Hardware in the Loop Technique. Applied Technologies. ICAT 2022. Communications in Computer and Information Science. doi: https://doi.org/10.1007/978-3-031-24971-6_28
  13. Kiku, A. G., Reva, E. Ju. (2008). Sintez ukorochennyh modeley dinamicheskih ob'ektov. Adaptyvni systemy avtomatychnogo upravlinnya, 2 (13), 77–82. doi: https://doi.org/10.20535/1560-8956.13.2008.34081
  14. Pavliukov, M. S., Liashenko, I. M., Pryimak, B. I. (2018). Zmenshennia poriadku modeli elektropryvodu lanky zvariuvalnoho manipuliatora. Suchasni problemy elektro enerhotekhniky ta avtomatyky, 540–543. Available at: http://jour.fea.kpi.ua/article/view/165075
  15. Freitas, F. D., Rommes, J., Martins, N. (2008). Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models. IEEE Transactions on Power Systems, 23 (3), 1258–1270. doi: https://doi.org/10.1109/TPWRS.2008.926693
  16. Rugh, W. J., Shamma, J. S. (2000). Research on gain scheduling. Automatica, 36 (10), 1401–1425. doi: https://doi.org/10.1016/s0005-1098(00)00058-3
  17. Sheremet, O. I., Tkachenko, O. O. (2017). Teoretychni aspekty syntezu releinykh rehuliatoriv dlia elektropryvodiv postiynoho strumu. Visnyk Donbaskoi derzhavnoi mashynobudivnoi akademiyi, 3 (24Е), 97–102. Available at: http://www.dgma.donetsk.ua/science_public/science_vesnik/%E2%84%963(24%D0%95)_2017/article/15.pdf
  18. Moskalenko, V., Moskalenko, A. (2022). Neural network based image classifier resilient to destructive perturbation influences – architecture and training method. Radioelectronic and Computer Systems, 3, 95–109. doi: https://doi.org/10.32620/reks.2022.3.07
  19. Cabrera-Rufino, M.-A., Ramos-Arreguín, J.-M., Rodríguez-Reséndiz, J., Gorrostieta-Hurtado, E., Aceves-Fernandez, M.-A. (2022). Implementation of ANN-Based Auto-Adjustable for a Pneumatic Servo System Embedded on FPGA. Micromachines, 13, 890. doi: https://doi.org/10.3390/mi13060890
  20. Warrier, P., Shah, P. (2021). Fractional Order Control of Power Electronic Converters in Industrial Drives and Renewable Energy Systems: A Review. IEEE Access, 9, 58982–59009. doi: https://doi.org/10.1109/ACCESS.2021.3073033
Development of the method of constructing the expander turbine rotation speed regulator

Downloads

Published

2023-04-17

How to Cite

Kulinchenko, H., Zhurba, V., Panych, A., & Leontiev, P. (2023). Development of the method of constructing the expander turbine rotation speed regulator. Eastern-European Journal of Enterprise Technologies, 2(2 (122), 44–52. https://doi.org/10.15587/1729-4061.2023.276587