Skip to main content
Log in

Reduced synthesis temperatures of SrNbO2N perovskite films for photoelectrochemical fuel production

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Perovskite oxynitrides, such as SrNbO2N, have been shown to be promising materials for photoanodes in tandem photoelectrochemical cells, due to their suitable bandgap and charge transport. However, thin film synthesis and characterization of oxynitride perovskites are challenging due to high processing temperatures that are incompatible with available substrates. In this work, we report on reduced synthesis temperatures of SrNbO2N perovskite thin films on Si substrates across a range of chemical compositions. Polycrystalline thin films with perovskite crystal structure are obtained by sputtering at ambient temperature and annealing at 550–600 °C. The perovskite structure has a relatively broad range of cation composition between 50 and 60% Sr with varying O/N ratio according to Rutherford backscattering spectrometry. The maximum photocurrent density was obtained at 55 cation % of Sr, which is slightly Sr-rich compared to the nominal SrNbO2N stoichiometry. This work shows the importance of considering cation and anion composition in studying oxynitride perovskites for solar fuel applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578–590 (2016). https://doi.org/10.1039/c5qi00202h

    Article  CAS  Google Scholar 

  2. M.M. May, H.J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). https://doi.org/10.1038/ncomms9286

    Article  CAS  Google Scholar 

  3. R.J. Britto, J.L. Young, Y. Yang, M.A. Steiner, D.T. Lafehr, D.J. Friedman, M. Beard, T.G. Deutsch, T.F. Jaramillo, Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. J. Mater. Chem. A 7, 16821–16832 (2019). https://doi.org/10.1039/c9ta05247j

    Article  CAS  Google Scholar 

  4. K.T. VanSant, A.C. Tamboli, E.L. Warren, III-V-on-Si tandem solar cells. Joule 5, 514–518 (2021). https://doi.org/10.1016/j.joule.2021.01.010

    Article  Google Scholar 

  5. K.R. Talley, J. Mangum, C.L. Perkins, R. Woods-Robinson, A. Mehta, B.P. Gorman, G.L. Brennecka, A. Zakutayev, Synthesis of lanthanum tungsten oxynitride perovskite thin films. Adv. Electron. Mater. 5, 1900214 (2019). https://doi.org/10.1002/aelm.201900214

    Article  CAS  Google Scholar 

  6. F. Oehler, S.G. Ebbinghaus, Photocatalytic properties of CoOx-loaded nano-crystalline perovskite oxynitrides ABO2N (A = Ca, Sr, Ba, La; B = Nb, Ta). Solid State Sci. 54, 43–48 (2016). https://doi.org/10.1016/j.solidstatesciences.2015.09.003

    Article  CAS  Google Scholar 

  7. S. Nishimae, Y. Mishima, H. Nishiyama, Y. Sasaki, M. Nakabayashi, Y. Inoue, M. Katayama, K. Domen, Fabrication of BaTaO2N thin films by interfacial reactions of BaCO3/Ta3N5 layers on a Ta substrate and resulting high photoanode efficiencies during water splitting. Sol. RRL 4, 1–8 (2020). https://doi.org/10.1002/solr.201900542

    Article  CAS  Google Scholar 

  8. K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227–2230 (2015). https://doi.org/10.1021/ja5131879

    Article  CAS  Google Scholar 

  9. N.Y. Park, Y.-I. Kim, Morphology and band gap variations of oxynitride LaTaON2 depending on the ammonolysis temperature and precursor. J. Mater. Sci. 47, 5333–5340 (2012). https://doi.org/10.1007/s10853-012-6420-4

    Article  CAS  Google Scholar 

  10. S. Pokrant, S. Dilger, S. Landsmann, Morphology and mesopores in photoelectrochemically active LaTiO2N single crystals. J. Mater. Res. 31, 1574–1579 (2016). https://doi.org/10.1557/jmr.2016.9

    Article  CAS  Google Scholar 

  11. L. Zhou, S.K. Suram, N. Becerra-Stasiewicz, S. Mitrovic, K. Kan, R.J.R. Jones, J.M. Gregoire, Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides. J. Mater. Res. 30, 2928–2933 (2015). https://doi.org/10.1557/jmr.2015.140

    Article  CAS  Google Scholar 

  12. Y.-I. Kim, P.M. Woodward, K.Z. Baba-Kishi, C.W. Tai, Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb). Chem. Mater. 16, 1267–1276 (2004). https://doi.org/10.1021/cm034756j

    Article  CAS  Google Scholar 

  13. B. Hessen, S.A. Sunshine, T. Siegrist, R. Jimenez, Crystallization of reduced strontium and barium niobate perovskites from borate fluxes. Mat. Res. Bull. 26, 85–90 (1991). https://doi.org/10.1016/0025-5408(91)90041-J

    Article  CAS  Google Scholar 

  14. G. Tobías, D. Beltrán-Porter, O.I. Lebedev, G. Van Tendeloo, J. Rodríguez-Carvajal, A. Fuertes, Anion ordering and defect structure in Ruddlesden-Popper strontium niobium oxynitrides. Inorg. Chem. 43, 8010–8017 (2004). https://doi.org/10.1021/ic049236k

    Article  CAS  Google Scholar 

  15. G. Tobías, J. Oró-Solé, D. Beltrán-Porter, A. Fuertes, New family of ruddlesden-popper strontium niobium oxynitrides: (SrO)(SrNbO2-xN)n (n = 1, 2). Inorg. Chem. 40, 6867–6869 (2001). https://doi.org/10.1021/ic015566i

    Article  CAS  Google Scholar 

  16. P.H. Borse, H.G. Kim, J.S. Lee, Difference in electronic structure between tetragonal and cubic SrNbO2N. J. Appl. Phys. 98, 043706 (2005). https://doi.org/10.1063/1.2032612

    Article  CAS  Google Scholar 

  17. J. Seo, Y. Moriya, M. Kodera, T. Hisatomi, T. Minegishi, M. Katayama, K. Domen, Photoelectrochemical water splitting on particulate ANbO2N (A = Ba, Sr) photoanodes prepared from perovskite-type ANbO3. Chem. Mater. 28, 6869–6876 (2016). https://doi.org/10.1021/acs.chemmater.6b02091

    Article  CAS  Google Scholar 

  18. F. Oehler, H.T. Langhammer, S.G. Ebbinghaus, Preparation and dielectric properties of CaTaO2N and SrNbO2N ceramics. J. Eur. Ceram. Soc. 37, 2129–2136 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.12.030

    Article  CAS  Google Scholar 

  19. B. Siritanaratkul, K. Maeda, T. Hisatomi, K. Domen, Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. Chemsuschem 4, 74–78 (2011). https://doi.org/10.1002/cssc.201000207

    Article  CAS  Google Scholar 

  20. D.Y. Wan, Y.L. Zhao, Y. Cai, T.C. Asmara, Z. Huang, J.Q. Chen, J. Hong, S.M. Yin, C.T. Nelson, M.R. Motapothula, B.X. Yan, D. Xiang, X. Chi, H. Zheng, W. Chen, R. Xu, Ariando, A. Rusydi, A.M. Minor, M.B.H. Breese, M. Sherburne, M. Asta, Q. Xu, T. Venkatesan, Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/ncomms15070

    Article  CAS  Google Scholar 

  21. K.R. Balasubramaniam, Y. Cao, N. Patel, S. Havelia, P.J. Cox, E.C. Devlin, E.P. Yu, B.J. Close, P.M. Woodward, P.A. Salvador, Phase and structural characterization of Sr2Nb2O7 and SrNbO3 thin films grown via pulsed laser ablation in O2 or N2 atmospheres. J. Solid State Chem. 181, 705–714 (2008). https://doi.org/10.1016/j.jssc.2008.01.007

    Article  CAS  Google Scholar 

  22. I. Molodetsky, A. Navrotsky, F. DiSalvo, M. Lerch, Energetics of oxidation of oxynitrides: Zr-N-O, Y-Zr-N-O, Ca-Zr-N-O, and Mg-Zr-N-O. J. Mater. Res. 15, 2558–2570 (2000). https://doi.org/10.1557/JMR.2000.0366

    Article  CAS  Google Scholar 

  23. A.E. Kennedy, B.H. Meekins, Combustion synthesis and photoelectrochemical characterization of gallium zinc oxynitrides. J. Mater. Res. 33, 3971–3978 (2018). https://doi.org/10.1557/jmr.2018.402

    Article  CAS  Google Scholar 

  24. S.H. Porter, S. Hwang, V. Amarsinghe, E. Taghaddos, V. Manichev, M. Li, G. Gardner, A. Safari, E. Garfunkel, M. Greenblatt, G.C. Dismukes, Optimizing “Artificial Leaf” photoanode-photocathode-catalyst interface systems for solar water splitting. ECS Trans. 72, 1–19 (2016). https://doi.org/10.1149/07237.0001ecst

    Article  CAS  Google Scholar 

  25. M. Cao, H. Li, K. Liu, J. Hu, H. Pan, J. Fu, M. Liu, Vertical SrNbO2N nanorod arrays for solar-driven photoelectrochemical water splitting. Sol. RRL 5, 1–6 (2021). https://doi.org/10.1002/solr.202000448

    Article  CAS  Google Scholar 

  26. M. Kodera, Y. Moriya, M. Katayama, T. Hisatomi, T. Minegishi, K. Domen, Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Sci. Rep. 8, 15849 (2018). https://doi.org/10.1038/s41598-018-34184-2

    Article  CAS  Google Scholar 

  27. R. Kikuchi, T. Nakamura, S. Tamura, Y. Kaneko, K. Hato, Fundamental semiconducting properties of perovskite oxynitride SrNbO2N: epitaxial growth and characterization. Chem. Mater. 29, 7697–7703 (2017). https://doi.org/10.1021/acs.chemmater.7b01320

    Article  CAS  Google Scholar 

  28. D. Oka, Y. Hirose, M. Kaneko, S. Nakao, T. Fukumura, K. Yamashita, T. Hasegawa, Anion-substitution-induced nonrigid variation of band structure in SrNbO3-xNx (0 ≤ x ≤ 1) epitaxial thin films. ACS Appl. Mater. Interfaces 10, 35008–35015 (2018). https://doi.org/10.1021/acsami.8b08577

    Article  CAS  Google Scholar 

  29. T. Nakamura, R. Kikuchi, Y. Yamashita, T. Kuroda, T. Chikyow, Y. Kaneko, Evaluation of band alignment of SrNbO2N using hard X-ray photoelectron spectroscopy. J. Phys. Chem. C 124, 5528–5532 (2020). https://doi.org/10.1021/acs.jpcc.9b10878

    Article  CAS  Google Scholar 

  30. A. Zakutayev, C.L. Perkins, Influence of protection layers on thermal stability of nitride thin films. Phys. Status Solidi - RRL. 2100178, 1–7 (2021). https://doi.org/10.1002/pssr.202100178

    Article  CAS  Google Scholar 

  31. S.K. Suram, S.W. Fackler, L. Zhou, A.T. N’Diaye, W.S. Drisdell, J. Yano, J.M. Gregoire, Combinatorial discovery of lanthanum-tantalum oxynitride solar light absorbers with dilute nitrogen for solar fuel applications. ACS Comb. Sci. 20, 26–34 (2018). https://doi.org/10.1021/acscombsci.7b00143

    Article  CAS  Google Scholar 

  32. J.P. MacMillan, J.W. Park, R. Gerstenberg, H. Wagner, K. Kohler, P. Wallbrecht, Strontium and strontium compounds, in Ullmann’s Encyclopedia of Industrial Chemistry. ed. by S.S. Chadwick (Wiley-VCH, KGaA, Weinheim, 2012)

    Google Scholar 

  33. I. Narkeviciute, P. Chakthranont, A.J.M. Mackus, C. Hahn, B.A. Pinaud, S.F. Bent, T.F. Jaramillo, Tandem core-shell Si-Ta3N5 photoanodes for photoelectrochemical water splitting. Nano Lett. 16, 7565–7572 (2016). https://doi.org/10.1021/acs.nanolett.6b03408

    Article  CAS  Google Scholar 

  34. K.N. Heinselman, S. Lany, J.D. Perkins, K.R. Talley, A. Zakutayev, Thin film synthesis of semiconductors in the Mg−Sb−N materials system. Chem. Mater. 31, 8717–8724 (2019). https://doi.org/10.1021/acs.chemmater.9b02380

    Article  CAS  Google Scholar 

  35. A.L. Greenaway, A.L. Loutris , K.N. Heinselman C.L. Melamed, R.R. Schnepf, M.B. Tellekamp, R. Woods-Robinson, R. Sherbondy, D. Bardgett, S. Bauers, A. Zakutayev, S. T. Christensen, S. Lany, A. C. Tamboli, Combinatorial synthesis of magnesium tin nitride semiconductors. J. Am. Chem. Soc. 142, 8421–8430 (2020). https://doi.org/10.1021/jacs.0c02092

  36. K.R. Talley, S.R. Bauers, C.L. Melamed, M.C. Papac, K.N. Heinselman, I. Khan, D.M. Roberts, V. Jacobson, A. Mis, G.L. Brennecka, J.D. Perkins, A. Zakutayev, COMBIgor: data-analysis package for combinatorial materials science. ACS Comb. Sci. 21, 537–547 (2019). https://doi.org/10.1021/acscombsci.9b00077

    Article  CAS  Google Scholar 

  37. A. Zakutayev, N. Wunder, M. Schwarting, J.D. Perkins, R. White, K. Munch, W. Tumas, C. Phillips, An open experimental database for exploring inorganic materials. Sci. Data 5, 1–12 (2018). https://doi.org/10.1038/sdata.2018.53

    Article  Google Scholar 

  38. J.M. Gregoire, C. Xiang, X. Liu, M. Marcin, J. Jin, Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev. Sci. Instrum. 84, 1–6 (2013). https://doi.org/10.1063/1.4790419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was authored at the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the Office of Energy Efficiency and Renewable Energy (EERE) Hydrogen and Fuel Cell Technologies Office (HFTO), as a part of HydroGEN Energy Materials Network (EMN) consortium (annealing optimization and electron microscopy); Office of Science, Basic Energy Sciences, as part of the Energy Frontier Research Center “Center for Next Generation of Materials Design: Incorporating Metastability” (composition and structure measurements), and as a part of Fuels from Sunlight Hubs “Joint Center for Artificial Photosynthesis” and “Liquid Sunlight Alliance” (SDC design, PEC characterization). The use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, was supported by DOE-SC-BES under Contract No. DE-AC02-76SF00515. We would like to thank Bart Stevens for helping with the RBS beam maintenance, Bobby To for SEM imaging, Steve Robbins for his help in building the SDC at NREL, John Gregoire at CalTech for providing the SDC design, and Chuck Dismukes at Rutgers for discussions on photoelectrochemistry. The views expressed in the article do not necessarily represent the views of the DOE or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karen N. Heinselman or Andriy Zakutayev.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinselman, K.N., Roberts, L.S., Young, J.L. et al. Reduced synthesis temperatures of SrNbO2N perovskite films for photoelectrochemical fuel production. Journal of Materials Research 37, 424–435 (2022). https://doi.org/10.1557/s43578-021-00448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00448-3

Keywords

Navigation