Skip to main content
Log in

Combustion synthesis and photoelectrochemical characterization of gallium zinc oxynitrides

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report a rapid combustion synthesis method for producing band gap tunable gallium zinc oxynitrides, a material of interest for water splitting applications. By varying the ratio of zinc and gallium, we can tune the band gap from 2.22 to 2.8 eV. Furthermore, nitrogen can be incorporated up to nearly 50% via replacement of oxygen without the need for high temperatures or an additional ammonolysis step. X-ray photoelectron spectroscopy (XPS) and EDX analysis suggests a preferential segregation of Zn to the surface of the as-synthesized particles, though the surface Ga/Zn molar ratio in the as-synthesized particles is correlated with the Ga/Zn molar ratio of the precursor materials. Photoelectrochemical measurements show that the oxynitride powders are photoactive under both AM1.5 and visible-only (λ > 435 nm) irradiation. Hydrogen and oxygen were both evolved in half-reaction experiments under simulated AM1.5 irradiation without externally applied bias, although addition of an OER catalyst did not enhance the rate of oxygen formation, suggesting that intra- and interparticle recombination are significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474 (2010).

    CAS  Google Scholar 

  2. A. Fujishima and K. Honda: Electrochemical photolysis at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Google Scholar 

  3. A. Fujishima and K. Kohayakawa: Hydrogen production under sunlight with an electrochemical photocell. J. Electrochem. Soc. 122, 1487 (1975).

    CAS  Google Scholar 

  4. K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, and Y. Inoue: Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 106, 9048 (2002).

    CAS  Google Scholar 

  5. R.G. Carr and G.A. Somorjai: Hydrogen production from photolysis of steam adsorbed onto platinized SrTiO3. Nature 290, 576 (1981).

    CAS  Google Scholar 

  6. K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda: Photocatalytic decomposition of water into H2 and O2 over NiO–SrTiO3 powder. 1. Structure of the catalyst. J. Phys. Chem. 90, 292 (1986).

    CAS  Google Scholar 

  7. K. Domen, S. Naito, T. Onishi, K. Tamaru, and M. Soma: Study of the photocatalytic decomposition of water vapor over a NiO–SrTiO3 catalyst. J. Phys. Chem. 86, 3657 (1982).

    CAS  Google Scholar 

  8. N.T. Hahn, S. Hoang, J.L. Self, and C.B. Mullins: Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films. ACS Nano 6, 7712 (2012).

    CAS  Google Scholar 

  9. G. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi, and K. Domen: Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts. J. Phys. Chem. Lett. 7, 3892 (2016).

    CAS  Google Scholar 

  10. C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, and K. Domen: A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600nm. Angew. Chem., Int. Ed. 54, 2955 (2015).

    CAS  Google Scholar 

  11. A. Hosono, S-K. Sun, Y. Masubuchi, and S. Kikkawa: Additive sintering and post-ammonolysis of dielectric BaTaO2N oxynitride perovskite. J. Eur. Ceram. Soc. 36, 3341 (2016).

    CAS  Google Scholar 

  12. H. Gao, M. Zhao, S. Yan, P. Zhou, Z. Li, Z. Zou, and Q. Liu: Anatase Mg(0.05)Ta(0.95)O(1.15)N(0.85): A novel photocatalyst for solar hydrogen production. RSC Adv. 6, 86240 (2016).

    CAS  Google Scholar 

  13. Z. Pan, T. Hisatomi, Q. Wang, M. Nakabayashi, N. Shibata, C. Pan, T. Takata, and K. Domen: Application of LaMg1/3Ta2/3O2N as a hydrogen evolution photocatalyst of a photocatalyst sheet for Z-scheme water splitting. Appl. Catal., A 521, 26 (2016).

    CAS  Google Scholar 

  14. K. Maeda, D.L. Lu, and K. Domen: Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d(0) electronic configuration. Chem.–Eur. J. 19, 4986 (2013).

    CAS  Google Scholar 

  15. K. Kamata, K. Maeda, D. Lu, Y. Kako, and K. Domen: Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chem. Phys. Lett. 470, 90 (2009).

    CAS  Google Scholar 

  16. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen: GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286 (2005).

    CAS  Google Scholar 

  17. K. Teramura, K. Maeda, T. Saito, T. Takata, N. Saito, Y. Inoue, and K. Domen: Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1−xZnx)(N1−xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 109, 21915 (2005).

    CAS  Google Scholar 

  18. M. Kodera, H. Urabe, M. Katayama, T. Hisatomi, T. Minegishi, and K. Domen: Effects of flux synthesis on SrNbO2N particles for photoelectrochemical water splitting. J. Mater. Chem. A 4, 7658 (2016).

    CAS  Google Scholar 

  19. M. Higashi, K. Domen, and R. Abe: Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. J. Am. Chem. Soc. 135, 10238 (2013).

    CAS  Google Scholar 

  20. M. Higashi, K. Domen, and R. Abe: Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4, 4138 (2011).

    CAS  Google Scholar 

  21. M. Higashi, K. Domen, and R. Abe: Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 134, 6968 (2012).

    CAS  Google Scholar 

  22. K. Maeda and K. Domen: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851 (2007).

    CAS  Google Scholar 

  23. C. Pan, T. Takata, and K. Domen: Overall water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chem.–Eur. J. 22, 1854 (2016).

    CAS  Google Scholar 

  24. W-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen: Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798 (2003).

    CAS  Google Scholar 

  25. Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, and M. Yashima: Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J. Phys. Chem. C 111, 1042 (2007).

    CAS  Google Scholar 

  26. K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe, and K. Domen: SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 133, 12334 (2011).

    CAS  Google Scholar 

  27. G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen: An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem. Commun. 0, 1698 (2002).

    CAS  Google Scholar 

  28. S.T. Aruna and A.S. Mukasyan: Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44 (2008).

    CAS  Google Scholar 

  29. Z. Yermekova, Z. Mansurov, and A.S. Mukasyan: Combustion synthesis of silicon nanopowders. Int. J. Self-Propag. High-Temp. Synth. 19, 94 (2010).

    CAS  Google Scholar 

  30. H.H. Nersisyan, J.H. Lee, and C.W. Won: Self-propagating high-temperature synthesis of nano-sized titanium carbide powder. J. Mater. Res. 17, 2859 (2002).

    CAS  Google Scholar 

  31. R.H. Limsay, R.A. Tayade, C.B. Talwatkar, S.P. Yawale, S.S. Yawale, and R.S. Bhavsar: Solution combustion synthesis of CaZrO3 using mixed fuel. Int. J. Mod. Phys. B 24, 6107 (2010).

    CAS  Google Scholar 

  32. M. Sathish, B. Viswanathan, R.P. Viswanath, and C.S. Gopinath: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17, 6349 (2005).

    CAS  Google Scholar 

  33. M. Mapa, K. Sivaranjani, D.S. Bhange, B. Saha, P. Chakraborty, A.K. Viswanath, and C.S. Gopinath: Structure, electronic structure, optical, and dehydrogenation catalytic study of (Zn1−zInz)(O1−xNx) solid solution. Chem. Mater. 22, 565 (2010).

    CAS  Google Scholar 

  34. S. RajaAmbal, A.K. Yadav, S.N. Jha, D. Bhattacharyya, and C.S. Gopinath: Electronic structure–sunlight driven water splitting activity correlation of (Zn1−yGay) (O1−zNz). Phys. Chem. Chem. Phys. 16, 23654 (2014).

    CAS  Google Scholar 

  35. B.H. Meekins, Y-C. Lin, J.S. Manser, K. Manukyan, A.S. Mukasyan, P.V. Kamat, and P.J. McGinn: Photoactive porous silicon nanopowder. ACS Appl. Mater. Interfaces 5, 2943 (2013).

    CAS  Google Scholar 

  36. Q. Gao, C. Giordano, and M. Antonietti: Controlled synthesis of tantalum oxynitride and nitride nanoparticles. Small 7, 3334 (2011).

    CAS  Google Scholar 

  37. C. Giordano, C. Erpen, W. Yao, B. Milke, and M. Antonietti: Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21, 5136 (2009).

    CAS  Google Scholar 

  38. A. Gomathi and C.N.R. Rao: Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route. Mater. Res. Bull. 41, 941 (2006).

    CAS  Google Scholar 

  39. Y. Qiu and L. Gao: Novel synthesis of nanocrystalline gallium nitride powder from gallium(III)–urea complex. Chem. Lett. 32, 774 (2003).

    CAS  Google Scholar 

  40. J. Buha, I. Djerdj, M. Antonietti, and M. Niederberger: Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source. Chem. Mater. 19, 3499 (2007).

    CAS  Google Scholar 

  41. A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493 (2016).

    CAS  Google Scholar 

  42. M.A. Abbas, M.A. Basit, S.J. Yoon, G.J. Lee, M.D. Lee, T.J. Park, P.V. Kamat, and J.H. Bang: Revival of solar paint concept: Air-processable solar paints for the fabrication of quantum dot-sensitized solar cells. J. Phys. Chem. C 121, 17658 (2017).

    CAS  Google Scholar 

  43. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, and K. Domen: Noble-Metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 45, 7806 (2006).

    CAS  Google Scholar 

  44. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131 (2004).

    CAS  Google Scholar 

  45. A. Fujishima, T. Kato, E. Maekawa, and K. Honda: Mechanism of the current doubling effect. I. The ZnO photoanode in aqueous solution of sodium formate. Bull. Chem. Soc. Jpn. 54, 1671 (1981).

    CAS  Google Scholar 

  46. A. Trapalis, J. Heffernan, I. Farrer, J. Sharman, and A. Kean: Low resistance ohmic contacts on wide band‐gap GaN. Appl. Phys. Lett. 64, 1003 (1994).

    Google Scholar 

  47. T. Oshima, M. Niwa, A. Mukai, T. Nagami, T. Suyama, and A. Ohtomo: Epitaxial growth of wide-band-gap ZnGa2O4 films by mist chemical vapor deposition. J. Cryst. Growth 386, 190 (2014).

    CAS  Google Scholar 

  48. F. Tessier, P. Maillard, F. Cheviré, K. Domen, and S. Kikkawa: Optical properties of oxynitride powders. J. Ceram. Soc. Jpn. 117, 1 (2009).

    CAS  Google Scholar 

  49. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, and K. Domen: Overall water splitting on (Ga1−xZnx)(N1−xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 109, 20504 (2005).

    CAS  Google Scholar 

  50. J. Lu, Q. Zhang, J. Wang, F. Saito, and M. Uchida: Synthesis of N-Doped ZnO by grinding and subsequent heating ZnO-urea mixture. Powder Technol. 162, 33 (2006).

    CAS  Google Scholar 

  51. Structural, electrical, and optical characterization of as grown and oxidized zinc nitride thin films. J. Appl. Phys. 120, 205102 (2016).

  52. G. He, T. Chikyow, X. Chen, H. Chen, J. Liu, and Z. Sun: Cathodoluminescence and field emission from GaN/MgAl2O4 grown by metalorganic chemical vapor deposition: Substrate-orientation dependence. J. Mater. Chem. C 1, 238 (2013).

    CAS  Google Scholar 

  53. G-M. Rignanese, A. Pasquarello, J-C. Charlier, X. Gonze, and R. Car: Nitrogen incorporation at Si(001)-SiO2 interfaces: Relation between N 1 s core-level shifts and microscopic structure. Phys. Rev. Lett. 79, 5174 (1997).

    CAS  Google Scholar 

  54. M. Stefik: Atomic layer deposition of bismuth vanadates for solar energy materials. ChemSusChem 9, 1727 (2016).

    CAS  Google Scholar 

  55. H. Hashiguchi, K. Maeda, R. Abe, A. Ishikawa, J. Kubota, and K. Domen: Photoresponse of GaN:ZnO electrode on FTO under visible light irradiation. Bull. Chem. Soc. Jpn. 82, 401 (2009).

    CAS  Google Scholar 

  56. A. Kasahara, K. Nukumizu, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen: LaTiO2N as a visible-light (≤600 nm)-Driven photocatalyst (2). J. Phys. Chem. B 107, 791 (2003).

    CAS  Google Scholar 

  57. L. Vayssieres: On Solar Hydrogen and Nanotechnology (John Wiley & Sons, San Diego, California, 2010); pp. 223–225.

    Google Scholar 

  58. R. Abe, M. Higashi, and K. Domen: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828 (2010).

    CAS  Google Scholar 

  59. T. Minegishi, N. Nishimura, J. Kubota, and K. Domen: Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 4, 1120 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research described herein was supported in part by the NASA South Carolina Space Grant Consortium. We acknowledge the University of South Carolina College of Engineering and Computing X-ray Photoelectron Spectroscopy Facility for use of the instrument. BHM wishes to thank Dr. Stavros Karakalos for his assistance with XPS data collection and analysis and the Lauterbach group for access to their diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin H. Meekins.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, A.E., Meekins, B.H. Combustion synthesis and photoelectrochemical characterization of gallium zinc oxynitrides. Journal of Materials Research 33, 3971–3978 (2018). https://doi.org/10.1557/jmr.2018.402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.402

Navigation